

Hellemmes (59)

Etude historique et caractérisation des futurs déblais de terrassement

Rapport n° PR.59GT.23.0294-59EN – Pièce n°001 – $1^{\text{ère}}$ diffusion – 05/08/2024

Projet Porte Métropolitaine Rue Danton 59260 – Hellemmes

VOTRE AGENCE

PARC D'ACTIVITE DU MELANTOIS 50 RUE DES SORBIERS CS20541 59815 – LESQUIN CEDEX

2 03.20.14.99.40

₼ 03.20.13.84.32

RT 261-301- Indice P

denvironnement.lille@groupefondasol.com

SUIVI DES MODIFICATIONS ET MISES A JOUR

Le chef de projet de cette étude est : T. RAMARD.

Rév.	Date	Nb pages	Modifications	Rédacteur	Vérificateur	Superviseur
				T. RAMARD	C. DELCAMBRE	C. DELCAMBRE
-	05/08/2024	24 + Annexes	l ^{ère} diffusion	(Anara)	Themon	Sacribas
Α						
В						
С						

RESUME TECHNIQUE

Client	METROPOLE EUROPEENNE DE LILLE					
Périmètre d'étude	Adresse Rue Danton à Hellemmes (59)					
refilled e d edde	Linéaire	780 m				
Contexte de l'étude	Cette étude est réalisée da	ns le cadre du projet Porte Métropolitaine.				
	Synthèse des données acquis	ses dans le cadre de cette étude				
Étude historique	bâtiment industriel (tis Depuis au moins 1932 à un espace vert.	oins : voiries. I moins 1981 : la partie est du site est occupée par un sage). jusqu'à au moins 1971 : la partie ouest du site correspond oins jusqu'à aujourd'hui : la partie est du site traverse un				
Diagnostic des terres à excaver	 Les prélèvements ont été réalisés le 20/03/2024. 6 fouilles ont été réalisées à la pelle mécanique entre 1,1 m et 2 m de profondeur. 6 échantillons ont été envoyés au laboratoire pour analyses ISDI. 					
Interprétation des résultats des terres à excaver	seuil pour les fluorures fixé de Stockage de Déchets In projet pourront être évacu	nt mis en évidence la présence de deux dépassements du par l'arrêté du 12 décembre 2014 relatif aux Installations ertes (ISDI). Ainsi, les terres à excaver dans le cadre du ées en Installation de Stockage de Déchets Inertes (ISDI) +) pour les remblais de la fouille PM3 et la craie au niveau				
Recommandation	- la réalisation d'invisite industriel; - le respect des filiè Dans le cadre des évacuati préalable (CAP) auprès du ci devront être réaliser sele D'autre part, pour rappel, excavées, même si les terréalisée au Registre Nation https://rndts-diffusion.devel	PASOL Environnement recommande estigations complémentaires de sols au niveau de l'ancien res d'évacuation des terres à excaver. ions, il conviendra de réaliser un certificat d'acceptation centre repreneur des terres en amont des travaux. Ceuxon la règlementation en vigueur. dès qu'il y a mouvement de plus de 500 m³ de terres res restent sur le même site, une déclaration doit être la l des Déchets, Terres excavées et Sédiments (RNDTS: loppement-durable.gouv.fr/fr). En cas de changement du recommandations seraient à réévaluer.				

SOMMAIRE

A.	Con	texte et objectifs de notre mission	6
В.	Prés	entation du site et du projet	_ 7
	B.1.	Description générale du site	7
	B.2.	Projet d'aménagement	7
C.	Etud	le historique et documentaire	_ 9
	C.I.	Sources d'informations	9
	C.2.	Evolution du site – consultation des photographies aériennes	9
	C.3.	Consultation de la base de données Secteur d'Information sur les Sols (SIS)	
	C.4.	Etude de la fiche CASIAS correspondant à l'adresse du site	_ 11
	C.5. suspe	Etude de la fiche d'informations de l'administration concernant une polluectée ou avérée présente au droit du site	
	C.6.	Historique des Installations Classées pour la Protection de l'Environnement_	_ 11
	C.7.	Accidents ou incidents environnementaux	_ 13
	C.8.	Synthèse historique de l'exploitation du site	_ 13
	C.9.	Conclusion sur l'étude historique du site	_ 14
D.	S écu	risation des investigations et déroulement des investigations	_ 15
E.	Inve	stigations sur les sols et les terres à excaver	_ 16
	E.I.	Stratégie d'investigations sur les sols	_ 16
	E.2.	Déroulement de la campagne d'investigations des sols	_ 17
	E.3.	Observations de terrain	_ 17
	E.4.	Sélection des échantillons de sols	_ 18
	E.5.	Valeurs de référence	_ 18
	E.6.	Présentation des résultats	_ 19
	E.7.	Interprétation des résultats	_ 19
F.	Synt	hèse des résultats	_ 21
	F.I.	Synthèse cartographique	_ 21
G.	Con	clusion et recommandations	_ 22
Н.	Limi	tes de la méthode	_ 23
	H.I.	Etude documentaire	
	H.2.	Investigations	
	H.3.		
Δnn	exes		24

TABLE DES ANNEXES

Annexe I: Abréviations

	Annexe 2 : Normes et méthodologie	
	Annexe 3 : Propriétés physico-chimiques des composés recherchés	
	Annexe 4 : Méthodes analytiques, limites de quantification et flaconnage	
	Annexe 5 : Fiches de prélèvement des sols	
	Annexe 6 : Bordereaux d'analyses des essais de laboratoire sur les sols	
TABLE DE	ES FIGURES	
	Figure 1: Localisation géographique et cadastrale du site d'étude (source : IGN©)	_ 7
	Figure 2: Plan de masse du projet de réaménagement du secteur.	_ 8
	Figure 3 : Photographies aériennes (source : IGN©)	10
	Figure 4 : Plan d'archives du cadastre de 1905 transmis par la mairie d'Hellemmes	12
	Figure 5 : Plan d'archives du cadastre de 1958 transmis par la mairie d'Hellemmes	12
	Figure 6 : Plan d'archives du cadastre de 2005 transmis par la mairie d'Hellemmes	13
	Figure 7 : Plan de synthèse des sources potentielles de pollution recensées sur site	14
	Figure 8 : Localisation des investigations sur les sols et des sources potentielles pollution	de 16
	Figure 9 : Synthèse cartographique des investigations réalisées dans les sols	21
LISTE DES	S TABLEAUX	
	Tableau I : Liste des clichés consultés (source : IGN©)	9
	Tableau 2 : Synthèse de l'historique de l'exploitation du site	13
	Tableau 3 : Activités et installations potentiellement polluantes identifiées	14
	Tableau 4 : Stratégie d'investigations	16
	Tableau 5 : Coordonnées des points de prélèvements des fouilles	17
	Tableau 6 : Synthèse du programme analytique sur les sols	18

Tableau 7 : Résultats analytiques _______ 20

A. CONTEXTE ET OBJECTIFS DE NOTRE MISSION

Dans le cadre du projet Porte Métropolitaine, la METROPOLE EUROPEENNE DE LILLE a confié à FONDASOL Environnement la réalisation d'un diagnostic environnemental des terres à excaver, à la suite de notre devis référencé SQ.59GT.23.12.006 en date du 04/12/2023.

Cette étude a pour objectifs de :

- retracer l'historique du site ;
- déterminer, dans une première approche, les filières d'évacuation des déblais de terrassement.

B. PRESENTATION DU SITE ET DU PROJET

B.I. Description générale du site

Le site d'étude est localisé rue Danton sur la commune d'Hellemmes, dans le département du Nord (59).

Le site correspond à des voiries d'environ 780 m et à un parking. Le linéaire est localisé en zone urbanisée avec en bordure des logements collectifs, des commerces et la voie ferrée

La localisation géographique et cadastrale du site est présentée en Figure 1.

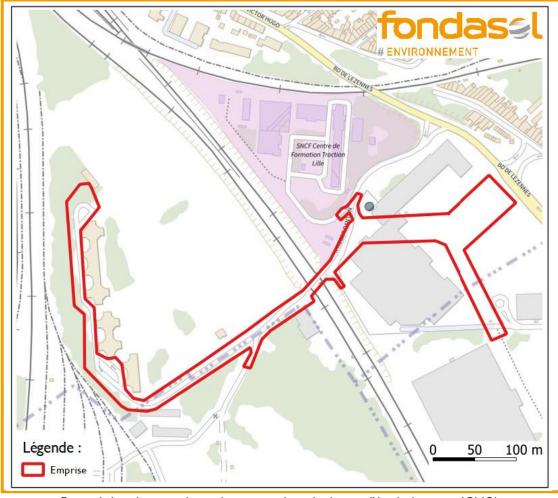


Figure 1: Localisation géographique et cadastrale du site d'étude (source : IGN©)

B.2. Projet d'aménagement

Le projet consiste au réaménagement du secteur et à la création du projet Porte Métropolitaine.

Le plan de masse est présenté en Figure 2.

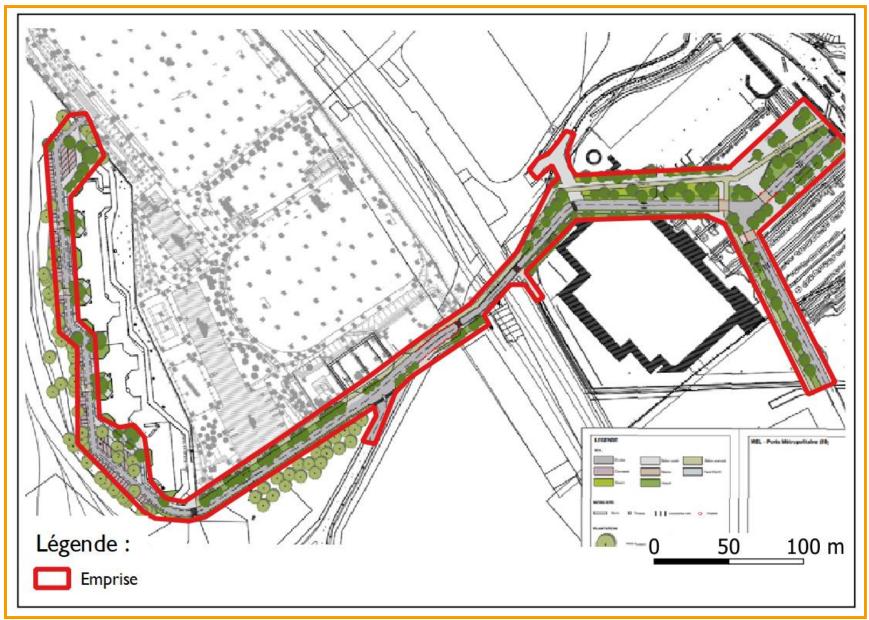


Figure 2: Plan de masse du projet de réaménagement du secteur.

C. ETUDE HISTORIQUE ET DOCUMENTAIRE

L'étude historique a pour but de reconstituer, à travers l'histoire des pratiques industrielles et environnementales du site, d'une part les zones potentiellement polluées et d'autre part les types de polluants potentiellement présents au droit du site concerné.

C.I. Sources d'informations

Cette étude historique s'appuie sur :

- la base de données Géorisques pour :
 - o les sites CASIAS (ex BASIAS),
 - o les sites disposant d'informations de l'administration concernant une pollution suspectée ou avérée (ex BASOL),
 - les sites disposant d'obligations réglementaires liées aux parcelles cadastrales : Secteurs d'Information sur les Sols (SIS) et/ou servitudes d'utilité publique (SUP),
 - o le registre d'émissions polluantes ;
- la base de données des ICPE accessible sur Géorisques.gouv.fr;
- l'étude de photographies aériennes disponibles sur le site de l'IGN©;
- l'étude de la photographie aérienne disponible sur Géoportail.gouv.fr;
- la base de données ARIA du BARPI.

C.2. Evolution du site – consultation des photographies aériennes

Les clichés consultés sont présentés dans le Tableau I.

Tableau I : Liste des clichés consultés (source : IGN©)

Date	Référence	N° cliché
11/08/1932	C2606-0641_1932_NP2_3120	3120
13/10/1950	C2404-0051_1950_F2404-2604_0202	202
01/06/1960	C2504-0271_1960_CDP1636_9611	9611
01/01/1971	C1020-0251_1971_CDP7939_2163	2163
06/09/1981	C2504-0021_1981_FR3380_0096	96
29/07/1991	C91SAA1662_1991_FR4765_0002	2
17/06/2000	CA00S00762_2000_fd5962_250_0581	581
10/08/2012	CP12000412_15_0872_RGB	872
2021	Géoportail	

La synthèse des observations réalisées au droit du site et dans l'environnement proche, ainsi qu'une sélection des photographies jugées les plus représentatives de l'évolution de l'histoire du site et de son environnement, sont présentées dans la Figure 3.

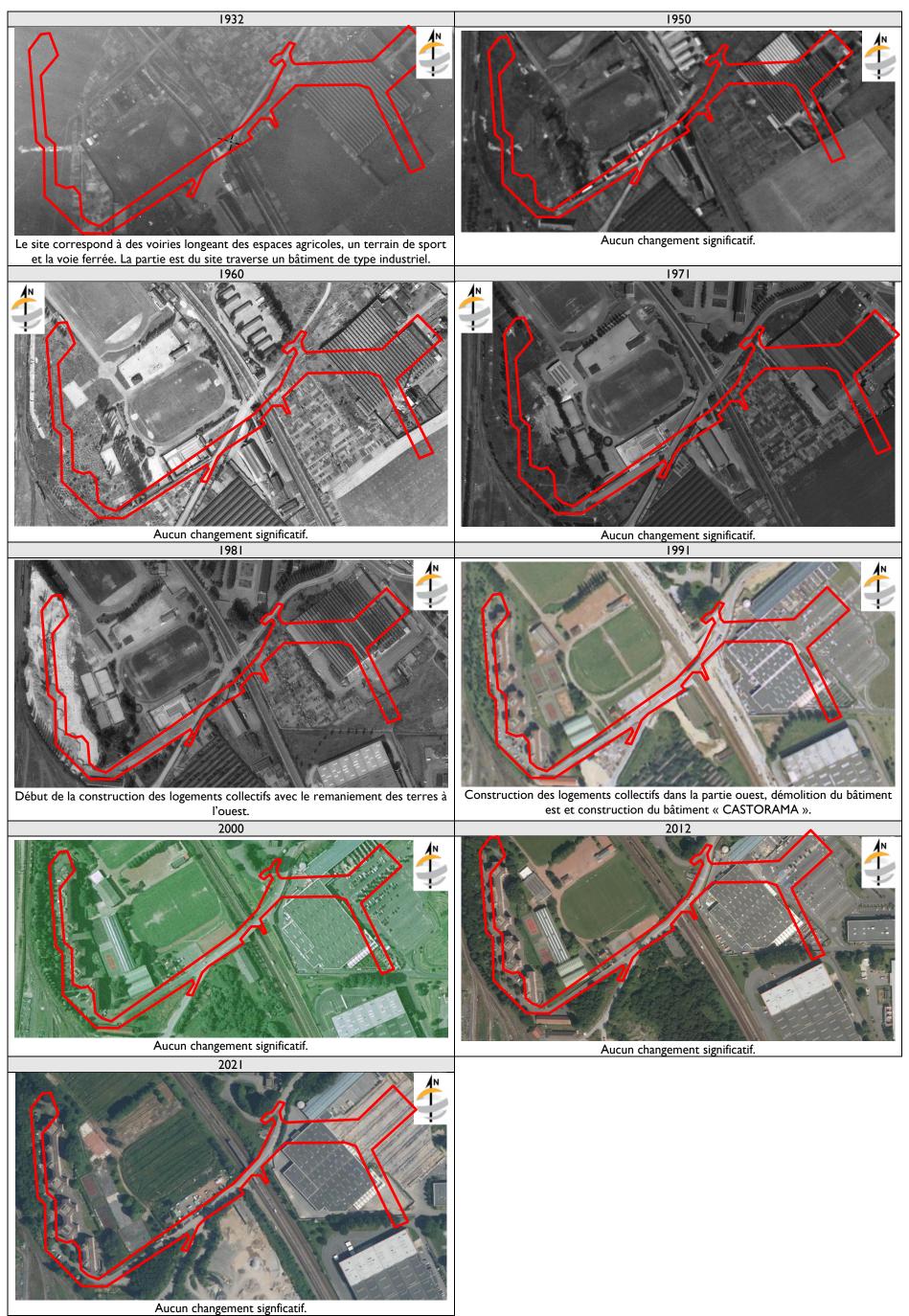


Figure 3 : Photographies aériennes (source : IGN©)

C.3. Consultation de la base de données Secteur d'Information sur les Sols (SIS)

Le site n'est pas référencé dans la base de données SIS.

C.4. Etude de la fiche CASIAS correspondant à l'adresse du site

Le site d'étude n'est pas référencé dans la base de données CASIAS.

C.5. Etude de la fiche d'informations de l'administration concernant une pollution suspectée ou avérée présente au droit du site

Le site d'étude n'est pas référencé dans la base de données des sites disposant d'informations de l'administration concernant une pollution suspectée ou avérée.

C.6. Historique des Installations Classées pour la Protection de l'Environnement

Le site n'est pas référencé dans la base de données des ICPE accessible sur https://www.georisques.gouv.fr/risques/installations/donnees?page=1. A noter que cela n'exclut pas le classement ICPE d'une activité au droit du site (notamment au régime de la déclaration).

C.6.1. Consultation de la mairie d'Hellemmes-Lille

Compte tenu de la présence d'un ancien bâtiment industriel sur la zone d'étude, la mairie d'Hellemmes a été contactée par mail le 14/03/2024.

Par retour de mail le 17/04/2024, la mairie d'Hellemmes indique :

- d'après le plan de 1905, le site traverse probablement des parcelles agricoles ;
- sur le plan de 1958, les bâtiments du tissage DUHAMEL et AGALYS sont présents ;
- en 1975, pas de modification majeure par rapport à 1958;
- en 2005 apparaît la surface commerciale construite à la place de l'ancien tissage.

Les plans envoyés par la mairie d'Hellemmes sont présentés en Figure 4, Figure 5 et Figure 6.

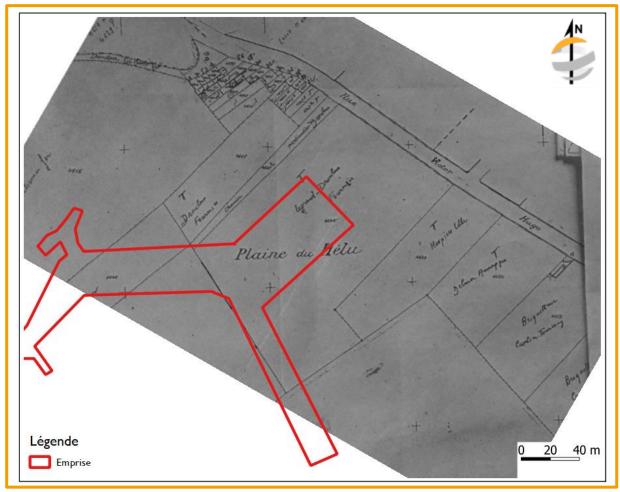


Figure 4 : Plan d'archives du cadastre de 1905 transmis par la mairie d'Hellemmes

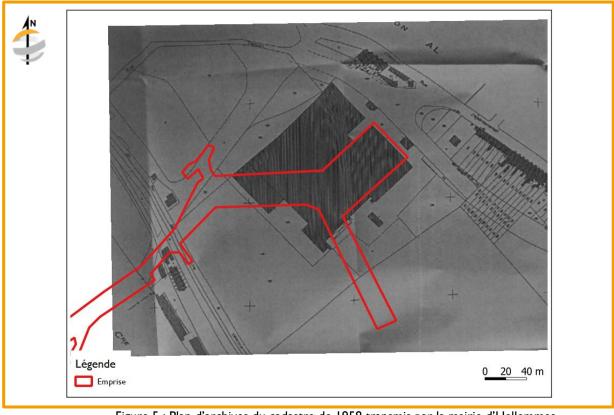


Figure 5 : Plan d'archives du cadastre de 1958 transmis par la mairie d'Hellemmes

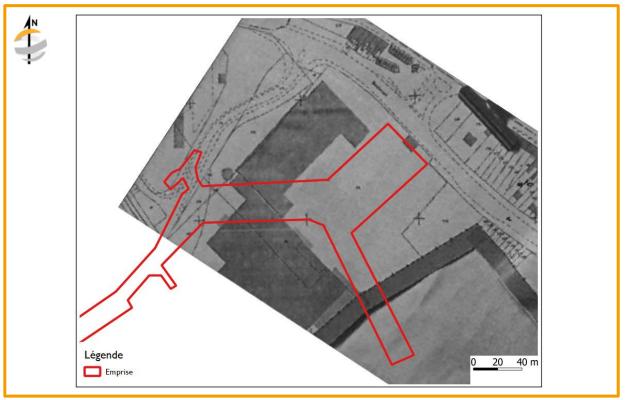


Figure 6 : Plan d'archives du cadastre de 2005 transmis par la mairie d'Hellemmes

C.7. Accidents ou incidents environnementaux

D'après la base de données ARIA gérée par le BARPI, un accident environnemental est recensé sur la commune d'Hellemmes. Il s'agit d'un incendie dans un atelier de tissage.

Compte tenu des activités identifiées au droit du site et des éléments collectés lors de l'étude historique, il est probable que cet incident ait influencé la qualité des sols au droit du site étudié (dépôts de fumées).

Cependant, FONDASOL Environnement n'est pas en mesure d'affirmer de l'absence d'autre accident au droit du site.

C.8. Synthèse historique de l'exploitation du site

Le Tableau 2 présente la synthèse de l'historique du site.

Tableau 2 : Synthèse de l'historique de l'exploitation du site

Exploitant	Années d'exploitation	Activités / stockages / dépôts (rubrique ICPE)	Origine
Inconnu	Depuis au moins 1905	Le site correspond à des parcelles agricoles.	
VILLE D'HELLEMMES-LILLE	A partir de 1932 au moins	Le site correspond à des voiries.	The state of the s
DUHAMEL ET AGALYS	Depuis 1932 jusqu'à au moins 1981	La partie est correspond à un ancien bâtiment industriel de tissage.	
Inconnu	Depuis au moins 1932 jusqu'au moins 1971	La partie ouest du site correspond à un espace vert.	- t
CASTORAMA	A partir de 1991 au moins jusqu'à aujourd'hui	La partie est du site traverse un bâtiment commercial et un parking.	

Anciennes photographies aériennes

Informations transmises par la mairie

C.9. Conclusion sur l'étude historique du site

La synthèse des informations collectées dans le cadre de l'étude historique et documentaire est présentée sur le plan en Figure 7 et dans le Tableau 3.

Tableau 3 : Activités et installations potentiellement polluantes identifiées

Installation/activité	Profondeur des sources	Localisation sur le site	Polluants potentiels	Milieux potentiellement impactés
Apport de remblais d'origine inconnue				
Fuites d'hydrocarbures au niveau des voiries	l m	site	Métaux lourds, HAP, BTEX, HCT, PCB	Sols
Ancien bâtiment industriel (usine textile)	2 m	Partie est du site		

Les abréviations des composés / packs analytiques proposés sont décrites en Annexe I.

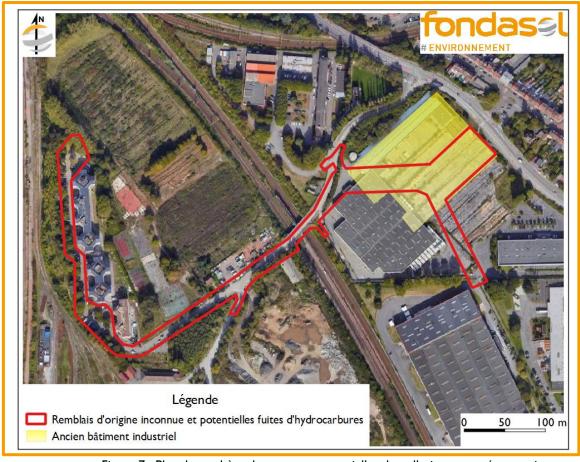


Figure 7 : Plan de synthèse des sources potentielles de pollution recensées sur site

D. SECURISATION DES INVESTIGATIONS ET DEROULEMENT DES INVESTIGATIONS

Dans le but de sécuriser l'intervention vis-à-vis des réseaux enterrés, FONDASOL a géré les DICT. Les DICT ont été lancées le 20/12/2023 sous les n°2023122002848D.

Le planning pour cette mission a été le suivant :

- La campagne d'investigations sur les sols a été réalisée le 20/03/2024 par la société FONDASOL.
- Les échantillons de sols sélectionnés ont été pris en charge par transporteur express le 21/03/2024 et réceptionnés par le laboratoire le 22/03/2024.
- Les derniers résultats d'analyses ont été réceptionnés le 03/04/2024.

E. INVESTIGATIONS SUR LES SOLS ET LES TERRES A EXCAVER

E.I. Stratégie d'investigations sur les sols

Les investigations menées sur le secteur d'étude ont consisté en la réalisation de 6 fouilles à la pelle mécanique conduites jusqu'à des profondeurs comprises entre 1,1 et 2 m.

La stratégie d'investigations est rappelée dans le Tableau 4.

Enjeu Profondeur Profondeur **Fouilles** Source potentielle de pollution Objectifs prévisionnelle atteinte PMI 2 m 2 m PM2 2 m 2 m Déterminer les filières Apport de remblais d'origine d'évacuation des PM3 2 m 2 m inconnue, fuites terres qui seront d'hydrocarbures au niveau des PM4 2 m 2 m excavées dans le voiries cadre du projet PM5 2 m 0.75 m PM6 2 m I.I m

Tableau 4 : Stratégie d'investigations

Aucune fouille n'a pu être réalisée au droit de l'ancien bâtiment industriel compte tenu des difficultés d'accès dans cette zone (dépôt de gravats et création de fossés sur l'ancien parking). Les fouilles PM5 et PM6 ont rencontré un refus sur un horizon dur (graves ou maçonnerie).

La localisation des fouilles est présentée dans la Figure 8. L'ensemble des données de terrain a été consigné et est présenté en Annexe 5.

Figure 8: Localisation des investigations sur les sols et des sources potentielles de pollution

E.2. Déroulement de la campagne d'investigations des sols

Les coordonnées géographiques des fouilles sont précisées dans le Tableau 5.

Tableau 5 : Coordonnées des points de prélèvements des fouilles

Points de	Coordonnées géographiques en WGS84					
prélèvement	X	Y				
PMI	3.091914598	50.619166776				
PM2	3.092390415	50.617173035				
PM3	3.093877598	50.617197153				
PM4	3.096549017	50.618495581				
PM5	3.098996225	50.618517101				
PM6	3.099619689	50.618526034				

FONDASOL a veillé au bon état du matériel utilisé pour la réalisation des fouilles et a nettoyé les outils avant et entre chaque utilisation. Les fouilles ont été immédiatement rebouchées. Aucun matériau excédentaire n'a été laissé sur site.

Les prélèvements ont été réalisés par un ingénieur du Département Environnement de FONDASOL qui a procédé au relevé des coupes lithologiques et au prélèvement d'échantillons, à raison d'au moins un échantillon par mètre linéaire de terrains traversés et par faciès géologique rencontré, ou moins en cas d'identification d'indices organoleptiques. De plus, il a reporté toutes les observations utiles à la sélection des échantillons (aspect, couleur, ...) dans les fiches de prélèvements présentées en Annexe 5.

Dès leur prélèvement, les échantillons ont été conditionnés dans des flaconnages spécifiques fournis par le laboratoire, étiquetés sur site afin d'en assurer la traçabilité et stockés en atmosphère réfrigérée afin d'assurer leur bonne conservation jusqu'à leur arrivée au laboratoire d'analyses.

Les échantillons ont été analysés par le laboratoire AGROLAB, accrédité par le RvA – Raad voor Accreditatie – conformément aux critères des laboratoires d'analyses ISO/IEC 17025:2017, accréditation reconnue par le COFRAC.

E.3. Observations de terrain

De manière générale, les relevés lithologiques ont mis en évidence la présence :

- de 3 cm d'enrobé reposant sur 10 cm de béton en PM5 ;
- de maçonnerie jusqu'à 0,75 m de profondeur en PM5 ;
- de remblais hétérogènes reconnus jusqu'à des profondeurs comprises entre 0,6 et 1.8 m :
- de graves caillouteuses très denses jusqu'à 1,1 m de profondeur en PM6;
- d'un limon crayeux reconnu jusqu'à 1,6 m de profondeur en PM3
- puis d'une craie blanche jusqu'à la base des fouilles PMI à PM4.

Aucun niveau d'eau n'a été rencontré au droit du site.

Aucun indice organoleptique de la présence de polluant n'a été observé lors de la réalisation des investigations.

Les échantillons prélevés ont fait l'objet de mesures PID (Réf. de l'appareil : 3EL.E.01) sur le terrain, afin d'évaluer le potentiel de dégazage des sols en composés organiques volatils.

L'ensemble de ces mesures semi-quantitatives a mis en évidence des valeurs de 0 ppm ou inférieures à la limite de quantification de l'appareil.

E.4. Sélection des échantillons de sols

Sur la base des observations de terrain et du projet d'aménagement prévu au droit du site, 6 échantillons de sols ont été sélectionnés afin d'obtenir une caractérisation de l'ensemble des profondeurs et transmis au laboratoire pour analyses.

Ainsi, les échantillons envoyés en analyses et les paramètres recherchés sont présentés dans le Tableau 6. Notons que les analyses hors pack ISDI ont été réalisées sur une fraction de sols de 2 mm, comme recommandé dans l'arrêté du 02/02/2022.

Les propriétés physico-chimiques des composés recherchés sont présentées en Annexe 3 et les méthodes analytiques, les limites de quantification et le descriptif du flaconnage utilisé en Annexe 4.

Fouilles	Echantillons	Enjeu	Paramètres recherchés		
roullies	(profondeur)	Source potentielle de pollution	Objectifs	I2 ETM	Pack ISDI
PMI	PMI (0-0,7 m)			Х	X
PM2	PM2 (1,8-2 m)	A	Déterminer les filières	Х	Х
PM3	PM3 (0-1 m)	Apport de remblais d'origine inconnue, fuites	d'évacuation des terres	Х	Х
PM4	PM4 (0,4-1 m)	d'hydrocarbures au niveau des voiries	qui seront excavées dans	Х	Х
PM5	PM5 (0,6-1 m)		le cadre du projet.	Х	Х
PM6	PM6 (0-0,7 m)			Х	Х

Tableau 6 : Synthèse du programme analytique sur les sols

Les abréviations des composés / packs analytiques sont décrites en Annexe I.

E.5. Valeurs de référence

Afin d'appréhender la gestion des terres qui seront potentiellement excavées dans le cadre du projet d'aménagement, les concentrations sur le sol brut et lixiviats ont été comparées aux critères d'acceptation définis dans l'arrêté du 12 décembre 2014 relatif aux Installations de Stockage de Déchets Inertes (ISDI) ainsi qu'aux seuils d'admission en ISDND et ISDD établis par la FNADE.

Conformément à la méthodologie pour la gestion des sites et sols pollués, nous rappelons que les concentrations doivent être comparées en priorité au bruit de fond ou fond géochimique local. A cette fin, les résultats d'analyses pour les métaux sont comparés à titre indicatif, à la gamme de valeurs du bruit de fond pédo-géochimique régional disponible :

 référentiel pédo-géochimique du Nord – Pas-de-Calais. Les résultats et les stratégies d'interprétation sont rassemblés dans l'ouvrage « référentiel pédo-géochimique du Nord – Pas-de-Calais – Rapport final, INRA-ISA ».

En l'absence de valeur caractérisant le bruit de fond pour les autres substances, un simple constat de présence ou d'absence a été réalisé en référence à des teneurs supérieures ou inférieures aux limites de quantification du laboratoire.

Les valeurs de comparaison retenues sont rappelées dans les dernières colonnes des tableaux des résultats d'analyses.

E.6. Présentation des résultats

Les bordereaux d'analyses sur les sols sont présentés en Annexe 6. Le Tableau 7 présente la synthèse des résultats et la comparaison aux valeurs de référence précitées.

E.7. Interprétation des résultats

Les analyses ont mis en évidence la présence de dépassements de certains critères de l'arrêté du 12 décembre 2014 relatif aux Installations de Stockage de Déchets Inertes (ISDI) : fluorures. Une partie des terres excavées devra donc faire l'objet d'une gestion spécifique qui induira des surcoûts.

Conformément à l'article 6 de l'arrêté du 12 décembre 2014 relatif aux ISDI, une adaptation des critères d'acceptation peut être utilisée pour permettre le stockage de déchets dont la composition correspond au fond géochimique local. Sont considérées comme acceptables en filière ISDI dite aménagée (ISDI+) des terres présentant des teneurs sur lixiviats ne dépassant pas 3 fois les valeurs limites sur la lixiviation des critères d'acceptation initiaux (facteur 2 pour le COT).

Cette règle étant respectée sur les échantillons PM3 (0-1 m) et PM4 (0,4-1 m), les dépassements en fluorures pourraient être considérés comme acceptables en ISDI+.

Ainsi, les terres à excaver dans le cadre du projet pourront donc être évacuées en Installation de Stockage de Déchets Inertes (ISDI) ou Inertes Aménagée (ISDI+).

Rappelons que les terres présentant des indices organoleptiques (couleur, odeur) ou des débris (ferrailles, ...) peuvent ne pas être acceptées en ISDI.

De plus, les résultats ont également mis en évidence une anomalie en métaux lourds (cuivre) au droit de l'échantillon PM5 (0,6-1 m).

Tableau 7 : Résultats analytiques

Nom áchantillan		DM1 (0.0.7 m)	DM2 (1 0 2 m)	DM2 (0 1 m)		PME (0.4.1 m)				Seuil déchets		
Nom échantillon			PM2 (1,8-2 m)	PM3 (0-1 m)	PM4 (0,4-1 m)	PM5 (0,6-1 m)	PM6 (0-0,7 m)	Fond		inertes	Seuils déchets	Seuils déchets
Lithologie	Unités	Remblais limoneux	Craie	Remblais	Craie	Remblais sableux	Remblais limoneux	géochimique	Arrêté du 12/12/2014	Arrêté du 12/12/2014	non dangereux Décision CE du	dangereux Décision CE du
Date d'échantillonnage		IIIIoneux		20	/03/2024	Sableux	IIIIolieux	naturel local	,,	Dérogation de	19/12/2002	19/12/2002
Paramètre				20	703/2024					l'article 6		
Matière sèche	%	82,4	80,8	80,8	81,5	84,7	82,8					
COT Carbone Organique Total	mg/kg Ms	13000	14000	16000	24000	19000	22000		30 000	30 000	50000	60000
- :	IIIg/kg I-is	13000	14000	16000	24000	19000	22000		30 000	30 000	50000	60000
Métaux lourds			- 10			1 14		244				
Antimoine (Sb)		1,5	1,0	1,5	1,8	1,4	1,5	2.44				
Arsenic (As)		4,2	5,3	8,3	3,8	11	8,4	33				
Baryum (Ba)		48	56	91	56	300	90	-				
Cadmium (Cd)		0,1	0,3	0,4	0,2	0,5	0,4	1.36				
Chrome (Cr)		15	15	23	15	24	29	78.1				
Cuivre (Cu)	// M-	13	18	23	14	190	27	74				
Mercure (Hg)	mg/kg Ms	<0,05	0,07	0,16	<0,05	0,20	0,12	0.276				
Molybdène (Mo)		<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	1.34				
Nickel (Ni)		П	П	19	13	19	18	38.6				
Plomb (Pb)		17	23	51	13	64	46	198.1				
Sélénium (Se)		<1,0	<1,0	<1,0	<1,0	<1,0	<1,0	0.78				
Zinc (Zn)		33	44	140	40	170	85	205				
	aliannas (HAD			140	40	170	03	203				
Hydrocarbures Aromatiques Polycyo	cliques (FIAF		<0.050	<0.050	<0.050	<0.050	<0.050					
Acénaphtylène		<0,050	<0,050	<0,050	<0,050	<0,050	<0,050					
Acénaphtène		<0,050	<0,050	<0,050	<0,050	<0,050	<0,050					
Fluorène		<0,050	<0,050	<0,050	<0,050	<0,050	<0,050					
Pyrène		0,19	1,1	0,33	0,11	0,30	0,068					
Benzo(b)fluoranthène		0,15	0,72	0,25	0,15	0,40	0,086					
Dibenzo(a,h)anthracène		<0,050	0,087	<0,050	<0,050	<0,050	<0,050					
Anthracène		<0,050	0,12	<0,050	<0,050	<0,050	<0,050					
Benzo(a)anthracène		0,13	0,78	0,27	0,10	0,22	0,062					
Benzo(a)pyrène		0,13	0,73	0,28	0,094	0,37	0,071					
Benzo(g,h,i)pérylène	mg/kg Ms	0,084	0,51	0,22	0,070	0,34	<0,050					
Benzo(k)fluoranthène	5 6	0,064	0,37	0,15	0,069	0,21	<0,050					
Chrysène		0,004	0,37	0,15	0,087	0,26	0,076					
·		0,13	1,5	0,23	0,13	0,26	0,076					
Fluoranthène						1						
Indéno(1,2,3-cd)pyrène		0,089	0,54	0,17	0,080	0,34	<0,050					
Naphtalène		<0,050	0,064	0,080	<0,050	<0,050	<0,050					
Phénanthrène		0,078	0,67	0,25	0,13	0,15	0,069					
HAP (6 Borneff) - somme		0,757	4,37	1,58	0,693	1,83	0,267					
Somme HAP (VROM)		0,945	6,02	2,18	0,903	2,06	0,388					
HAP (EPA) - somme		1,29	7,93	2,76	1,16	2,76	0,542		50	50	100	300
Composés Organiques Volatils - BTE	EX			•		•	•	•				
Benzène		<0,050	<0,050	<0,050	<0,050	<0,050	<0,050					
Toluène		<0,050	<0,050	<0,050	<0,050	<0,050	<0,050					
Ethylbenzène		<0,050	<0,050	<0,050	<0,050	<0,050	<0,050					
	=/ M.	<0,10	<0,10	<0,10	<0,10	<0,10	<0,10					
m,p-Xylène	mg/kg Ms		1									
o-Xylène		<0,050	<0,050	<0,050	<0,050	<0,050	<0,050					
Somme Xylènes		n.d.	n.d.	n.d.	n.d.	n.d.	n.d.					
BTEX total		n.d.	n.d.	n.d.	n.d.	n.d.	n.d.		6	6	30	>30
Hydrocarbures totaux (HCT)												
Hydrocarbures totaux C10-C40		<20,0	83,5	26,1	29,8	110	<20,0		500	500	2000	10000
Fraction C10-C12		<4,0	<4,0	<4,0	<4,0	<4,0	<4,0					
Fraction C12-C16		<4,0	<4,0	<4,0	<4,0	20,0	<4,0					
Fraction C16-C20		<2,0	7,5	4,7	3,2	7,0	<2,0					
Fraction C20-C24	mg/kg Ms	<2,0	12,0	4,6	5,2	18,7	<2,0					
Fraction C24-C28	0 0	<2,0	18,4	4,2	7,1	19,8	2,5					
Fraction C28-C32		<2,0	24	4,7	6,4	19	3,3					
		<2,0	1			1						
Fraction C32-C36			12,9	2,8	4,0	15,6	<2,0					
Fraction C36-C40		<2,0	4,5	<2,0	<2,0	6,8	<2,0					
PolyChloroBiphényls (PCB)					ı	T						
PCB (28)		<0,001	<0,001	<0,001	<0,001	<0,001	<0,001					
PCB (52)		<0,001	<0,001	<0,001	<0,001	0,002	<0,001					
PCB (101)		<0,001	<0,001	<0,001	<0,001	0,006	0,001					
PCB (118)		<0,001	<0,001	<0,001	<0,001	0,004	0,001					
PCB (138)	mg/kg Ms	<0,001	<0,001	0,001	<0,001	0,007	0,004					
PCB (153)		<0,001	<0,001	<0,001	<0,001	0,005	0,002					
PCB (180)		<0,001	<0,001	<0,001	<0,001	0,002	0,001					
Somme 6 PCB		n.d.	n.d.	0,0010	n.d.	0,022	0,0080					
Somme 7 PCB (Ballschmiter)		n.d.	n.d.	0,0010	n.d.	0,026	0,0090		ı	1	10	50
Tests de lixiviation				3,3010	. 7.01	3,020	1 3,3070		•		- '0	
Métaux lourds		0.00=	0.007	0.000	0.00=	0.00=	0.00=					
Antimoine cumulé (var. L/S)		0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05		0,06	0,18	0.7	5
Arsenic cumulé (var. L/S)		0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0,10	0 - 0,05		0,5	1,5	2	25
Baryum cumulé (var. L/S)		0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1	0,29	0,11		20	60	100	300
Cadmium cumulé (var. L/S)		0 - 0,001	0 - 0,001	0 - 0,001	0 - 0,001	0,001	0 - 0,001		0,04	0,12	1	5
Chrome cumulé (var. L/S)		0 - 0,02	0 - 0,02	0 - 0,02	0 - 0,02	0,16	0 - 0,02		0,5	1,5	10	70
Cuivre cumulé (var. L/S)	m=11. A4	0 - 0,02	0 - 0,02	0,04	0,02	0,03	0,07		2	6	50	100
Mercure cumulé (var. L/S)	mg/kg Ms	0 - 0,0003	0 - 0,0003	0 - 0,0003	0 - 0,0003	0,0003	0 - 0,0003		0,01	0,03	0.2	2
Molybdène cumulé (var. L/S)		0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05		0,5	1,5	10	30
Nickel cumulé (var. L/S)		0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05		0,4	1,2	10	40
Plomb cumulé (var. L/S)		0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05			· ·	10	
. ,	4					-			0,5	1,5		50
Sélénium cumulé (var. L/S)		0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05		0,1	0,3	0.5	7
Zinc cumulé (var. L/S)		0 - 0,02	0 - 0,02	0 - 0,02	0 - 0,02	0,02	0,02		4	12	50	200
Autres paramètres												
Chlorures cumulé (var. L/S)		0 - 10	0 - 10	0 - 10	34	10	0 - 10		800	2400	15000	25000
COT cumulé (var. L/S)		0 - 200	0 - 200	0 - 200	0 - 200	0 - 200	0 - 200		500	1000	800	1000
Fluorures cumulé (var. L/S)	ma/ka Ma	7,0	9,0	15	11	7,0	8,0		10	30	150	500
Indice phénol cumulé (var. L/S)	mg/kg Ms	0 - 0,2	0 - 0,2	0 - 0,2	0 - 0,2	0 - 0,2	0 - 0,2		I	3	50	100
Sulfates cumulé (var. L/S)		0 - 50	0 - 50	0 - 50	100	530	250		1000	3000	20000	50000
Sulfaces Cultitule (val. L/3)		0 1000	0 - 1000	0 - 1000	0 - 1000	1500	0 - 1000		4000	12000	60000	100000
Fraction soluble cumulé (var. L/S)		0 - 1000	0 - 1000									
		IDSI	ISDI	ISDI+	ISDI+	ISDI	ISDI		Fili	ère d'élimination	n possible des déb	lais
				0 - 1000	0 - 1000	1300	U - 1000		4000	12000		60000

Concentration inférieure au seuil d'admissibilité en Installation de Stockage de Déchets Inertes (ISDI)

Concentration supérieure au seuil ISDI mais inférieure au seuil d'admissibilité en Installation de Stockage de Déchets Inertes aménagée (ISDI+)

Concentration supérieure au seuil ISDI+ mais inférieure au seuil d'admissibilité en Installation de Stockage de Déchets Non Dangereux (ISDND)

F. SYNTHESE DES RESULTATS

F.I. Synthèse cartographique

Une synthèse cartographique des teneurs significatives est proposée en Figure 9.

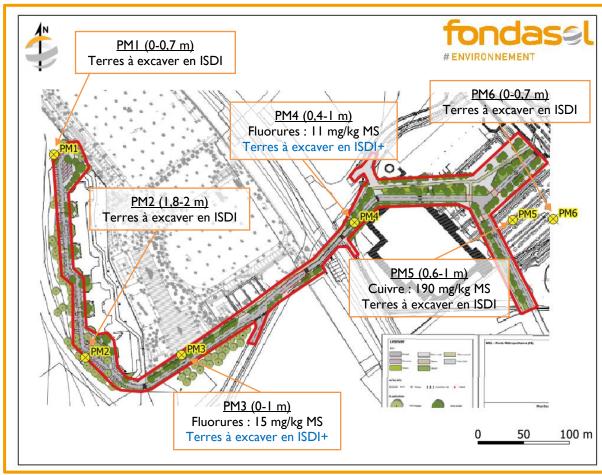


Figure 9 : Synthèse cartographique des investigations réalisées dans les sols

G. CONCLUSION ET RECOMMANDATIONS

Dans le cadre du projet Porte Métropolitaine, la METROPOLE EUROPEENNE DE LILLE a confié à FONDASOL Environnement la réalisation d'un diagnostic environnemental des terres à excaver.

Les analyses sur les sols ont mis en évidence la présence de deux dépassements du seuil pour les fluorures fixé par l'arrêté du 12 décembre 2014 relatif aux Installations de Stockage de Déchets Inertes (ISDI). Ainsi, les terres à excaver dans le cadre du projet pourront être évacuées en Installation de Stockage de Déchets Inertes (ISDI) ou Inertes Aménagée (ISDI+) pour les remblais de la fouille PM3 et la craie au niveau de la fouille PM4.

Compte tenu des résultats, FONDASOL Environnement recommande :

- la réalisation d'investigations complémentaires de sols au niveau de l'ancien site industriel :
- le respect des filières d'évacuation des terres à excaver.

Dans le cadre des évacuations, il conviendra de réaliser un certificat d'acceptation préalable (CAP) auprès du centre repreneur des terres en amont des travaux. Ceux-ci devront être réaliser selon la règlementation en vigueur.

D'autre part, pour rappel, dès qu'il y a mouvement de plus de 500 m³ de terres excavées, même si les terres restent sur le même site, une déclaration doit être réalisée au Registre National des Déchets, Terres excavées et Sédiments (RNDTS: https://rndts-diffusion.developpement-durable.gouv.fr/fr).

En cas de changement du projet d'aménagement, ces recommandations seraient à réévaluer.

H. LIMITES DE LA METHODE

Ce document doit être utilisé dans son entier.

Une étude de la pollution du milieu souterrain a pour seule fonction de renseigner sur la qualité des différents milieux investigués (sols, eaux souterraines, gaz du sol, ...). Toute utilisation en dehors de ce contexte, dans un but géotechnique par exemple, ne saurait engager la responsabilité de notre société.

Par ailleurs, ce document a été établi pour un projet d'aménagement spécifique. Toute évolution de ce projet devra donner lieu à une actualisation du présent document. Tout changement d'usage ultérieur pourra conduire à l'établissement de nouvelles mesures de gestion.

Par ailleurs, ce rapport est réalisé sur les données disponibles à la date de réalisation : il rend compte de l'état du milieu à un instant donné. Des évènements ultérieurs au diagnostic (interventions humaines, accidents, traitement des terres pour améliorer leurs caractéristiques mécaniques, ou phénomènes naturels) peuvent modifier la situation observée à cet instant.

H.I. Etude documentaire

Cette étude est basée sur une approche documentaire. Les informations présentées ici sont soumises à l'exhaustivité et la fiabilité des documents disponibles et consultables : l'existence d'une information « non identifiée » ou « erronée » est possible. L'exhaustivité et la véracité des informations dont FONDASOL Environnement n'a pas la maîtrise ne peuvent être garanties.

H.2. Investigations

Les prélèvements ne peuvent pas offrir une vision continue de l'état des terrains du site. L'existence d'une anomalie d'extension limitée entre deux prélèvements et/ou à plus grande profondeur, qui aurait échappé à nos investigations, ne peut être exclue. Par ailleurs, l'inaccessibilité de certaines zones peut entraîner un défaut d'observation non imputable à notre société.

D'autre part, le diagnostic permet d'établir un état des lieux de la qualité environnementale des milieux à un instant donné. La survenue d'un incident ou d'une pollution ultérieure à la réalisation des investigations de terrain dans le cadre du diagnostic peut remettre en cause la validité des résultats et des conclusions du diagnostic.

L'échantillonnage du fait de son caractère ponctuel ne permet pas de représenter la totalité des impacts anthropiques (activités et installations humaines ciblées, lors des investigations, en fonction des données disponibles).

FONDASOL Environnement n'est pas en mesure de préjuger de l'acceptation des terres odorantes ou présentant une couleur suspecte. L'acceptation des terres sera à vérifier auprès de la décharge. Des surcoûts supplémentaires peuvent donc être à prévoir.

H.3. Gestion d'une pollution identifiée

Cette mission de diagnostic ne permet pas de définir précisément les caractéristiques d'une éventuelle zone de pollution concentrée, ni d'en estimer les coûts de gestion ou les risques vis-à-vis de la santé humaine. Cela est le but d'un Plan de Gestion.

ANNEXE I: ABREVIATIONS

Abréviation	Définition
ARIA	Analyse, Recherche et Information sur les Accidents
BARPI	Bureau d'Analyse des Risques de Pollutions Industrielles
BASIAS	Base de données des Anciens Sites Industriels et Activités de Service
BASOL	Base de données sur les sites et sols pollués ou potentiellement pollués appelant une action des pouvoirs publics, à titre préventif ou curatif
BRGM	Bureau de Recherches Géologiques et Minières
BSS	Banque de données du Sous-Sol
BTEX	Hydrocarbures mono-aromatiques : Benzène, Toluène, Ethylbenzène et Xylènes
CASIAS	Cartes des Anciens Sites Industriels et Activités de Service
DICT	Déclarations d'Intention de Commencement de Travaux
FNADE	Fédération Nationale des Activités de Dépollution et de l'Environnement
FOD	Fioul domestique
HAP	Hydrocarbures Aromatiques Polycycliques (16 composés US EPA)
НСТ	Hydrocarbures Totaux C ₁₀ -C ₄₀
ICPE	Installations Classées pour la Protection de l'Environnement
IGN	Institut Géographique National
INERIS	Institut National de l'Environnement Industriel et des Risques
INPN	Inventaire National du Patrimoine Naturel
ISDD	Installation de Stockage de Déchets Dangereux
ISDI	Installation de Stockage de Déchets Inertes
ISDND	Installation de Stockage de Déchets Non Dangereux
LQ	Limite de Quantification

Abréviation	Définition
MS	Matière Sèche
NGF	Nivellement Général de la France
Pools ISDI	Analyses sur brut : Carbone Organique Total (COT), HAP, BTEX, PCB, HCT
Pack ISDI	Test de lixiviation : COT, 12 métaux lourds, chlorures, sulfates, fraction soluble, indice phénol, fluorures.
PCB	Polychlorobiphényles
8 ETM	8 éléments traces métalliques (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn)

ANNEXE 2 : NORMES ET METHODOLOGIE

NORMES DE PRELEVEMENT ET DOCUMENTS DE REFERENCE

Les prélèvements de sol ont été réalisés conformément aux normes en vigueur, notamment :

- norme NF ISO 18400-101 de juillet 2017 : « Qualité du sol Echantillonnage Partie 101 : Cadre pour la préparation et l'application d'un plan d'échantillonnage », qui annule et remplace la norme NF ISO 10381-1 de mai 2003 ;
- norme NF ISO 18400-102 de décembre 2017 : « Qualité du sol Echantillonnage Partie 102 : Choix et application des techniques d'échantillonnage », qui annule et remplace la norme NF ISO 10381-2 de mars 2003 ;
- norme NF ISO 18400-103 de décembre 2017 : « Qualité du sol Echantillonnage Partie 103 : Sécurité », qui annule et remplace la norme NF ISO 10381-3 de mars2002 ;
- norme NF ISO 18400-104 de décembre 2017 : « Qualité du sol Echantillonnage Partie 104 : Stratégies et évaluations statistiques » ;
- norme NF ISO 18400-105 de décembre 2017 : « Qualité du sol Echantillonnage Partie 105 : Emballage, transport, stockage et conservation des échantillons » qui annule et remplace la norme NF ISO 10381-6 de juin 2009 ;
- norme NF ISO 18400-106 de décembre 2017 : « Qualité du sol Echantillonnage Partie 106 : Contrôle de la qualité et assurance de la qualité » ;
- norme NF ISO 18400-107 de décembre 2017 : « Qualité du sol Echantillonnage Partie 107 : Enregistrement et notification » ;
- norme NF ISO 18400-201 de décembre 2017 : « Qualité du sol Echantillonnage Partie 201 : Prétraitement physique sur le terrain » ;
- norme NF ISO 18400-202 d'avril 2019 : « Qualité du sol Echantillonnage Partie 20 : 2 : Diagnostics préliminaires » ;
- norme NF ISO 18400-203 d'avril 2019 : « Qualité du sol Echantillonnage Partie 203 : Investigation des sites potentiellement contaminés » ;
- norme NF ISO 18400-301 d'octobre 2023 : « Qualité du sol Echantillonnage Partie 301 : échantillonnage et mesures semi-quantitatives sur les sites des composés organiques volatils dans le cadre des investigations sur le terrain »;
- norme NF ISO 18512 d'octobre 2007 « Qualité du sol Lignes directrices relatives au stockage des échantillons de sol à long et court termes »;
- norme NF ISO 10381-5 de décembre 2005 : « Qualité du sol Echantillonnage Partie
 5 : Lignes directrices pour la procédure d'investigation des sols pollués en sites urbains et industriels » :
- norme NF X 31-003 de décembre 1998 : « Qualité du sol Description du sol » ;

- norme NF X 31-100 de décembre 1992 : « Qualité des sols Echantillonnage Méthode de prélèvement d'échantillons de sol » ;
- norme NF ISO 15800 de mars 2020 : « Caractérisation des sols en lien avec l'évaluation de l'exposition des personnes ».

ANNEXE 3: PROPRIETES PHYSICO-CHIMIQUES DES COMPOSES RECHERCHES

Cette annexe contient 2 pages.

N° CAS	Composés	Formule chimique	Volatilité	Densité	Solubilité	Classem	Classement cancérogénéi	
						Classification	Classification	Classification
						EU	IARC	US-EPA

+ + : Pv > 1000 Pa

+ + : S > 10 000 mg/L

 \approx : 10 Pa > P > 0,5 Pa

- : d < I

-: I50 mg/L > S > I mg/L

-: 0.5 > Pa > 10-2 Pa

- - : S < I mg/L

--: 10-2 > Pa > 10-5 Pa

---: Pv < 10-5 Pa

N° CAS	Substances (Dénomination int)	Formule chimique						
	Métaux Lourds							
-	Antimoine	Sb				-	-	-
-	Arsenic	As				CIA		Α
-	Baryum	Ba				_	-	-
-	Cadmium	Cd				CIB/C2 MIB/M2 RIB/R2	I	probablement cancérigène
-	Chrome	Cr				CIA MIB R2	1	A (inhalation) D (ingestion)
-	Cuivre	Cu				-	-	-
7439-97-6	Mercure	Hg	Entre ≈ et selon la forme du mercure	+		-	-	-
-	Molybdène	Мо					-	-
-	Nickel	Ni				C2	2B	Α
-	Plomb	Pb				RIA	2B	B2
-	Sélénium	Se					-	-
-	Zinc	Zn				-	-	-
	ВТЕХ							
71-43-2	Benzène	С6Н6	++		+	CIA MIB	1	A
108-88-3	Toluène	C7H8	++		+	-	2B	С
100-41-4	Ethylbenzène	C8H10	++		+	-	2B	-
95-47-6	o-Xylène	C8H10	+	+	+	-	3	D
108-38-3 (m)	V D	COLLIA	++	+	+	-	3	D
106-42-3 (p)	m,p-Xylène	C8H10	++	+	+	-	-	-
	НАР							
83-32-9	Acénaphtène	C12H10	-	+	-	-	-	-
208-96-8	- Acénaphtylène	C12H8				-	-	D
120-12-7	Anthracène	CI4HI0		+	-	-	3	D
56-55-3	Benzo(a)anthracène	CI8HI2				CIB	2A	B2
50-32-8	Benzo(a)pyrène	C20H12				CIB MIB RIB	I	А
205-99-2	Benzo(b)fluoranthène	C20H12		+		CIB	2B	B2

N° CAS	Composés	Formule chimique	Volatilité	Densité	Solubilité	Classem	ent cancé	rogénéité
						Classification EU	Classification IARC	Classification US-EPA
191-24-2	Benzo(g,h,i)pérylène	C22H12		+		-	3	D
207-08-9	Benzo(k)fluoranthène	C20-H12		+		CIB	2B	B2
218-01-9	Chrysène	CI8HI2		+		CIB M2	3	B2
50-70-3	Dibenzo(a,h)anthracène	C22H14		+		CIB	2A	B2
206-44-0	Fluoranthène	C16H10		+	+		3	D
86-73-7	Fluorène	C13H10		+	-	-	3	D
193-39-5	Indéno(1,2,3-cd)pyrène	C22-H12		+		-	2B	B2
91-20-3	Naphtalène	C10H8	+	+	-	C2	2B	С
85-01-8	Phénanthrène	C14H10		+	-	-	3	D
129-00-0	Pyrène	C16H10		+		-	3	D
	РСВ							
1336-36-3	PCB - 42 % p/p en chlore			+	+			
1336-36-3	PCB - 54 % p/p en chlore			+	-	-	1	B2
1336-36-3	PCB - 60 % p/p en chlore			+	-			

ANNEXE 4: METHODES ANALYTIQUES, LIMITES DE QUANTIFICATION ET FLACONNAGE

AGROLAB – Flaconnage sols

Numéro de reference : Sol 0,375 L/LV2661

AGROLAB - Méthodes analytiques et limites de quantification

	AL WEST BV								
AGROLAB - Composés	Sols								
	Méthodes	LQ	Unités						
Métaux Lourds									
Antimoine	Conforme à EN-ISO 11885, EN 16174	0.5	mg/kg						
Arsenic	Conforme à EN-ISO 11885, EN 16174	ı	mg/kg						
Baryum	Conforme à EN-ISO 11885, EN 16174	ı	mg/kg						
Cadmium	Conforme à EN-ISO 11885, EN 16174	0.1	mg/kg						
Chrome	Conforme à EN-ISO 11885, EN 16174	0.2	mg/kg						
Cuivre	Conforme à EN-ISO 11885, EN 16174	0.2	mg/kg						
Mercure	Conforme à EN-ISO 11885, EN 16174	0.05	mg/kg						
Molybdène	Conforme à EN-ISO 11885, EN 16174	ı	mg/kg						
Nickel	Conforme à EN-ISO 11885, EN 16174	0.5	mg/kg						
Plomb	Conforme à EN-ISO 11885, EN 16174	0.5	mg/kg						
Sélénium	Conforme à EN-ISO 11885, EN 16174	ı	mg/kg						
Zinc	Conforme à EN-ISO 11885, EN 16174	ı	mg/kg						
CAV									
toluène, éthylbenzène, o-xylènes	Conforme à ISO 22155	0.05	mg/kg						
m,p-xylène	Conforme à ISO 22155	0.1	mg/kg						
Benzène	Conforme à ISO 22155	0.05	mg/kg						
Hydrocarbures									
Hydrocarbures C10-C40	ISO 16703	20	mg/kg						
НАР									

	AL WEST BV								
AGROLAB - Composés	Sols								
	Méthodes	LQ	Unités						
Acénaphtène	NF EN 16181	0.05	mg/kg						
Acénaphtylène	NF EN 16181	0.05	mg/kg						
Anthracène	NF EN 16181	0.05	mg/kg						
Benzo(a)anthracène	NF EN 16181	0.05	mg/kg						
Benzo(a)pyrène	NF EN 16181	0.05	mg/kg						
Benzo(b)fluoranthène	NF EN 16181	0.05	mg/kg						
Benzo(g,h,i)pérylène	NF EN 16181	0.05	mg/kg						
Benzo(k)fluoranthène	NF EN 16181	0.05	mg/kg						
Chrysène	NF EN 16181	0.05	mg/kg						
Dibenzo(a,h)anthracène	NF EN 16181	0.05	mg/kg						
Fluoranthène	NF EN 16181	0.05	mg/kg						
Fluorène	NF EN 16181	0.05	mg/kg						
Indéno(1,2,3-cd)pyrène	NF EN 16181	0.05	mg/kg						
Naphtalène	NF EN 16181	0.05	mg/kg						
Phénanthrène	NF EN 16181	0.05	mg/kg						
Pyrène	NF EN 16181	0.05	mg/kg						
РСВ									
Somme des 7 PCB congénères (PCB 28, 52, 101, 118, 138, 153, 180)	NEN-EN 16167	0.001	mg/kg						
Autres									
Indice phénol	EN-ISO 14402	0.1	mg/kg						
Matière sèche	NEN-EN15934; EN12880	0.01	%						
Sulfates	Méthode interne (mesurage conforme ISO 15923-1)	25	mg/kg						
Chlorures	Méthode interne (mesurage conforme ISO 15923-1)	20	mg/kg						
Fluorures	méthode interne	10	mg/kg						

ANNEXE 5: FICHES DE PRELEVEMENT DES SOLS

Cette annexe contient 12 pages.

Le géo-référencement des fouilles, la gestion des cuttings et des rebouchages, le protocole de prélèvement, la date d'envoi des échantillons et les conditions de transport sont indiqués dans le rapport.

caractérisation des futurs déblais

fc	חמ	das	9	Am	énager	nen	t Porte I	Métropolit	aine	(N° Projet: PR.59GT.23.0294) Rue Georges Danton à HELLE						
	Longit		Latitude				ordonnées	Précision des		Niv	eau d'e		tue O	eorges De	IIIIOII a I ILLLLI	IVIIVILS
	2.0021		50,6191		WGS 84	ue co	ordonnees	Plurimétrique	rejeves				an ma	surá 🗍 🖟	En cours de foi	rage
PM1	Élévati		Prof. att		Nivelleme	nt		Précision des	nivollomonts	12	Stahili	۱۱۱ ك	Nons	stabilisé [I Sec	rage
		nseigné	2,0 m	enne	NGF	311L		Décimètre	ilivellements	_	Judin.	JC 🗀	IVOITS	itabilise L	. Sec	
Début		nseigne	2,0 111	Fin	INGI			Machine						Opérateu:	,	
29/07/					07/2024			Pelle méca	niaue					P. FAURE		
		téorologi	2011	25/	0772024		Flaconnage		Préleveur			Ref. I		INTACKE	Ref. Piezo	
Ensole		corologic	ques				Verre 370m		T. RAMARD			3EL.			3EL.B.11	
												0				T 5
	<u>.e</u> .										Echantillons		_			Niveau d'eau
	<u> 0</u>				Ī	Descrip	otions			S	ntil	ŵ	udd	Indices	organoleptiques	an l
Prof.	Lithologie									Outils	cha	Notes	PID [ppm]			<u>≅</u>
0	IX IX									0	Ш	_ Z				Z
	RR															
5	RR															
-																
-	RR															
	RR															
	RR															
	RR										(i					
2	RR	Remblais	limoneux r	marron	avec débris	de brid	que et racines),7 r					
1	RR										0-0	v				
5	RR										PM1 (0-0,7 m)	Bonne tenue des parois				
-												d se				
	RR											e de				
_	RR											enn				
	RR											ne t				
	RR											3on				
	RR															
1	RR															
	D D	0,7 m									0,7 m					
										Ë						
	1 1									le - à godet - 30 cm						
										- to						
										gode				RAS		
										ά		1 m	0	l KAS		
1										<u>e</u>						
										Mini pell						
										Ξ						
8		Craie blar	nche													
	5 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1															
	9000															
	1000															
	100															
		4.0														
-	3 0	1,8 m														
	0100 0100 0100 0100 0100 0100 0100 010	Cesta III	aba ÷ '	â+												
		craie blar	nche à gris	atre												
	-	2 m								2 m			2 m	2 m		\Box
2																
Lai				: /	dans I:											
Les pa	rametres	analysés	sont ind	iques (dans le rap	port										
soilclo	ud.tech															

Aménagement Porte Métropolitaine

(N° Projet: PR.59GT.23.0294) Rue Georges Danton à HELLEMMES

ECHANTILLONS

Sondage	Élévation	Prof. atteinte					
PM1	-0,0 m NGF	2,0 m					

2,0 m

2,0 m

0,0 m

0,0 m

fo		da	Sąl	Aménagement Porte Métropolitaine								(N° Projet: PR.59GT.23.0294) Rue Georges Danton à HELLEMMES								
			Latitude	Н	Système de co	ordonnées	Préc	cision des re	levés	Nive	au d'ea			30.gcc 2	a					
	2.00		50,6170		WGS 84			imétrique					า mesเ	uré □ E	n cours de fo	orage				
PM2		ation	Prof. atteint		Nivellement						☐ Stabilisé ☐ Non stabilisé ☐ Sec									
	+30	,85 m	2,0 m		NGF		Déc	imètre		1										
Début					in			Machine						Opérateu						
29/04/		<i></i>		_ 2	29/04/2024	T = .		Pelle méca		P. FAURE Ref. PID Ref. Piezo										
Ensole		étéorolo	ogiques			Verre 370			Préleveur T. RAMARD	`			.E.01		Ref. Piezo 3EL.B.11					
LIISOIC	ille					Vene 370	7 1111		I. KAMAKE	<u>, </u>		JEE								
Élévation	Prof.	Lithologie				Descriptions				Outils	Echantillons	sNotes	PID [ppm]	Indices	organoleptique	niveau d'eau				
29,85	1	R R R R R R R R R R R R R R R R R R R	1 m		erme marron - limo	on avec très po	eu de r	remblais (Dma	x=370)	Mini pelle - à godet - 30 cm	3 PM2 (1,8-2 m) 88 B	Moyenne tenue des parois (a) Moyenne tenue des parois (b) Moyenne tenue des parois (c) (d) Moyenne tenue des parois (d)	O 2 m	RAS 2 m						
28,85	2		, =																	
	·amòtr	es analy	sás sant indi	iauá	és dans le rappo	rt														
			SSS SOME MICH	.que	от чано не тарро															
soilclou	ıa.tech	1																		

(N° Projet: PR.59GT.23.0294) Rue Georges Danton à HELLEMMES

ECHANTILLONS

Sondage	Élévation	Prof. atteinte
PM2	+30,85 m NGF	2,0 m

2,0 m

2,0 m

0,0 m

0,0 m

f		das		Ame	énageme	ent Porte I	Métropoli	itaine						9 <i>GT.23.0294)</i> anton à HELLE	MMES
		itude	Latitud	e e	Système de	coordonnées	Précision de	s relevés	Niv	eau d'					WIIWES
PM3	3,09	39	50,6172	2	WGS 84		Plurimétrique	е		Néant	: 🔲 N	on me	suré 🔲	En cours de fo	rage
1415	Eleve		Prof. at	teinte	Nivellement NGF			s nivellements	-	Stabili	isé 🗌	Non s	tabilisé (Sec	
Début		renseigné	2,0 m	Fin	NGF		Décimètre Machine		Onér	ateur					
	/2024				4/2024		-				ONDE	JR			
		étéorologio	_l ues			Flaconnage		Préleveur			Ref.	PID		Ref. Piezo	
Ensol	eillé					Verre 370m	l	T. RAMARD		I	3EL.	.E.01	I	3EL.B.11	
	Jie									Echantillons		Ē			Niveau d'eau
	Lithologie				Des	criptions			Outils	Janti	Notes	PID [ppm]	indices	organoleptiques	l eau
Prof.									no	Щ	S S	∃			ź
0	R R R R R R R R R R R R R R R R R R R	Remblais s		noir et ro	ouge avec ferra	illes et briques ro	ouges		et - 30 cm	PM3 (0-1 m)	Bonne tenue des parois Bonne tenue des parois Bonne tenue des parois				
1		1 m Craie blan	che						Mini pelle - à godet - 30 cm	1 m	Bonne tenue des parois m	Z m	RAS 2 m		
_															
Les na	nramètr <i>e</i>	s analysés	sont ind	igués c	lans le rappo	<u> </u>									
			22.10 1110	. 4400 0	тарро	-									
SOLICIC	ud.tech														

(N° Projet: PR.59GT.23.0294) Rue Georges Danton à HELLEMMES

ECHANTILLONS

0,0 m

Sondage	Élévation	Prof. atteinte
PM3	-0.0 m NGF	20 m

2,0 m

2,0 m

0,0 m

fo		da	Sąl	Amér	nagemei	nt Porte	Métr	opolitaine	9						9 <i>GT.23.0294)</i> anton à HELLEI	MMES
			Latitude	Systè	eme de coor	données	Précisio	on des relevés		Nive	au d'ea					
PM4	3,0	965	50,6185	WGS	84		Plurimé				léant [Nor	n mesi	ıré 🔲 E	n cours de fora	ge
L 141-4	Lie	vation	Prof. atteinte		llement			on des nivellem	nents	□ s	tabilise	∮ □ N	lon sta	abilisé 🗌	Sec	
Début	+33	,6 m	2,0 m	NGF	Fin		Décimè	tre Machine					100	érateur		
20/03/2	2024	11:20			20/03/202	4		Pelle mécani	aue					TONDEL	JR	
		étéorolo	ogiques			Flaconna	ge	Préle				Ref. I			Ref. Piezo	
Ensole	illé					Verre 370	Oml	T. RA	MARD			3EL.	E.01		3EL.B.11	
											suc					Niveau d'eau
tion		logie			D	escriptions				10	l til	· (0	mdc	Indices	organoleptiques	gn d
Élévation	Prof.	Lithologie								Outils	Echantillons	lote	PID [ppm]			live.
33,6	0	/ I/ I/									ш	Bonne tenue des paroisNotes	п.			
.		l∘R∘R∘	Schiste noir									s pai				
		l∘R∘R∘										e de				
		l∘R∘R∘										nuə:				
		\∘R∘R∘	0,2 m									nne 1				
33,4		XX										Bor				
		XX										0,2 m				
		XX														
		XX									0,4 m					
		20									0,1111					
		XX.														
		20														
		20														
											PM4 (0,4-1 m)					
		22									1 (0,4					
		22									PM4					
		77														
		22								Ε						
		XX								50 с						
		XX								let -						
		XX								le - à godet - 50 cm			0	RAS		
	1	XX								<u>e</u>	1 m	rois				
		XX	Craie fractur	ée blanch	e					Mini pell		s pa				
		XX								Ā		Bonne tenue des pa				
		XX										tenu				
		XX										nne				
		XX										Bc				
		XX														
		77														
		77														
		22														
		22														
		22														
		22														
		77														
		1/1														
		1														
		XX														
		XX														
		XX														
		XX														
		XX														
		XX	2 m							2 m		2 m	2 m	2 m		
31,6	2															
Les par	amètr	es analy	sés sont indic	qués dan	ıs le rapport											
soilclou	ıd.tecl	า														

(N° Projet: PR.59GT.23.0294) Rue Georges Danton à HELLEMMES

ECHANTILLONS

0,0 m

Sondage	Élévation	Prof. atteinte
PM4	+33,6 m NGF	2,0 m

2,0 m

0,0 m 2,0 m

fondas Aménagement Porte Métropolitaine									aine						9 <i>GT.23.0294)</i> anton à HELLEN	MES
			Latitude	Т	Système de co	ordonnées	P	récision des rel	levés	Nive	au d'ea			0.900 2		
D14	3,0		50,6182		WGS 84			lurimétrique					n mesu	ré 🔲 E	n cours de fora	ge
PM5		/ation	Prof. atteint		Nivellement			récision des niv	/ellements					bilisé 🗀		Ĭ
	+31,	35 m	0,75 m	_	NGF		D	écimètre		<u> </u>						
Début				Fin				Machine					Opéra			
20/03/2		étéorolo		20.	/03/2024	Посети		Pelle mécaniq	ue Préleveur			Ref.		NDEUR	Dof Dioma	
Ensole		ieteoroid	ogiques			Verre 370			T. RAMARD				.E.01		Ref. Piezo 3EL.B.11	
Liisole	110					Vene 37	J 1111	·	1. IVAIVIAID			JUL			JEE.B.II	
Élévation	Prof.	Lithologie				Descriptions				Outils	Echantillons	Notes	PID [ppm]	Indices	organoleptiques	Niveau d'eau
31,35	0			- bé	éton (Dmax=500)							arois				
31,3			0,05 m Maçonnerie							Mini pelle - à godet - 50 cm	(m 57.0-0) 2M9 (m 57.0-0,75 m)	Bonne tenue des paroto de paroto des parotos de parotos de parotos Notes	0.75 m	RAS 0,75 m		
	1									1,1 m		1,1 m				
Les par	amètr	es analy	sés sont indi	qué	s dans le rappo	rt										
soilclou	d.tecl	ı														

(N° Projet: PR.59GT.23.0294) Rue Georges Danton à HELLEMMES

ECHANTILLONS

0,0 m

Sondage	Élévation	Prof. atteinte
PM5	+31,35 m NGF	0,75 m

0,75 m

soilcloud.tech

Aménagement Porte Métropolitaine															9 <i>GT.23.0294)</i> anton à HELLEN	иMES
			Latitude		Système de coor	données	Pr	récision des re	levés	Nive	au d'ea			0.900 2	anton a 1 12221	
DNAC	3,09		50,6186	\dashv	WGS 84			lurimétrique	10100				n mesu	ré 🔲 E	n cours de fora	ge
РМ6		ation	Prof. atteint	:e	Nivellement			récision des ni	vellements					bilisé 🗀		
	+31,	95 m	1,1 m	_	NGF		D	écimètre								
Début				Fir			_	Machine					Opéra			
20/03/2		<u> </u>		20)/03/2024	Положения		Pelle mécanic				Dof		NDEUR	Dof Dione	
Ensole		étéorolo	ogiques			Flaconnag Verre 370			Préleveur T. RAMARD			Ref.	.E.01		Ref. Piezo 3EL.B.11	
LIISOIE						vene 370	,,,,,,		1. NAMAND			JEL			JLL.D.II	
Élévation	Prof.	Lithologie			D	escriptions				Outils	Echantillons	Notes	PID [ppm]	Indices	organoleptiques	Niveau d'eau
31,95	0	R R R R R R R R R R R R R R R R R R R	06 m		limoneuse remblayée use très dense gris (C					Mini pelle - à godet - 50 cm	ος. Σ- Β	2 Bonne tenue des parois Bonne tenue des parois B	0	RAS		
	1									1,1 m			1,1 m	1,1 m		
Les par	amètr	es analy:	sés sont indi	qué	és dans le rapport											
soilclou																$\overline{}$
Jonelou	الاحدد	•														

(N° Projet: PR.59GT.23.0294) Rue Georges Danton à HELLEMMES

ECHANTILLONS

Sondage	Élévation	Prof. atteinte
PM6	+31,95 m NGF	1,1 m

1,1 m

0,0 m

0,0 m

1,1 m

ANNEXE 6: BORDEREAUX D'ANALYSES DES ESSAIS DE LABORATOIRE SUR LES SOLS

Cette annexe contient 8 pages.

caractérisation des futurs déblais

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110 e-Mail: info@al-west.nl, www.al-west.nl

FONDASOL Environnement (59) Adresse facturation 290 rue des Galoubets 84140 MONTFAVET FRANCE

N° de client: 35007257

RAPPORT D'ANALYSE 1390644 PR.59GT.23.0294-59EN - T.RAMARD - PO.DTEN.24.0307

Date: 03.04.2024

Commande 1390644 Solide / Eluat

Client 35007257 FONDASOL Environnement (59)

Date de validation 22.03.2024

Projet SDIT - Analyses ISDI + 12 métaux - Devis

76-195514

Prélèvement par Client

Madame, Monsieur,

Nous avons le plaisir de vous adresser ci-joint le rapport définitif des analyses chimiques provenant du laboratoire pour votre dossier en référence.

Nous signalons que le certificat d'analyses ne pourra être reproduit que dans sa totalité. Les annexes éventuelles font partie du rapport.

Nous vous informons que seules les conditions générales de AL-West, déposées à la Chambre du Commerce et de l'Industrie de Deventer, sont en vigueur.

Au cas où vous souhaiteriez recevoir des renseignements complémentaires, nous vous prions de prendre contact avec le service après-vente.

En vous remerciant pour la confiance que vous nous témoignez, nous vous prions d'agréer, Madame, Monsieur l'expression de nos sincères salutations.

Ce rapport d'analyse avec le numéro de commande 1390644 et la version du rapport d'analyse 1 contient l'analyse ou les analyses 782992, 782993, 782994, 782995, 782996, 782997.

Respectueusement,

AL-West B.V. (AGROLAB GROUP), Mme Claire Mura, Tél: +33380680150

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

RAPPORT D'ANALYSE 1390644 PR.59GT.23.0294-59EN - T.RAMARD - PO.DTEN.24.0307

Date: 03.04.2024

Information sur l'échantillon

Numéro d'échantillon	Date de prélèvement	Nom d'échantillon
782992	20.03.2024	PM1 (1 m)
782993	20.03.2024	PM2 (2 m)
782994	20.03.2024	PM3 (1 m)
782995	20.03.2024	PM4 (0,4-1 m)
782996	20.03.2024	PM5 (0,6-1 m)
782997	20.03.2024	PM6 (0-0,7 m)

Lixiviation

Paramètres	Unité	782992 PM1 (1 m)	782993 PM2 (2 m)	782994 PM3 (1 m)	782995 PM4 (0,4-1 m)	782996 PM5 (0,6-1 m)	782997 PM6 (0-0,7 m)
Fraction >4mm (EN12457-2)	%	27,9 ¹⁾	1,9 ¹⁾	32,71)	77,4 ¹⁾	29,21)	3,4 ¹⁾
Masse brute Mh pour lixiviation*)	g	1101)	110 ¹⁾	110 ¹⁾	110 ¹⁾	110 ¹⁾	1101)
Lixiviation (EN 12457-2)		++1),2)	++1),2)	++1),2)	++1),2)	++1),2)	++1),2)
Volume de lixiviant L ajouté pour l'extraction*)	ml	900	900	900	900	900	900

Prétraitement des échantillons

Paramètres	Unité	782992 PM1 (1 m)	782993 PM2 (2 m)	782994 PM3 (1 m)	782995 PM4 (0,4-1 m)	782996 PM5 (0,6-1 m)	782997 PM6 (0-0,7 m)
Masse échantillon total inférieure à 2 kg ⁶⁾	kg	0,521)	0,511)	0,541)	0,621)	0,691)	0,681)
Prétraitement de l'échantillon		++2)	++2)	++2)	++2)	++2)	++2)
Broyeur à mâchoires		++2)	3)	++2)	++2)	++2)	3)
Matière sèche	%	82,41)	80,81)	80,81)	81,5 ¹⁾	84,71)	82,81)

Analyses Physico-chimiques

Paramètres	Unité	782992 PM1 (1 m)	782993 PM2 (2 m)	782994 PM3 (1 m)	782995 PM4 (0,4-1 m)	782996 PM5 (0,6-1 m)	782997 PM6 (0-0,7 m)
pH-H2O		8,6 ¹⁾	8,71)	8,31)	8,6 ¹⁾	8,41)	8,21)
COT Carbone Organique Total	mg/kg MS	13000	14000	16000	24000	19000	22000

Prétraitement pour analyses des métaux

Damana àtua a	11	782992	782993	782994	782995	782996	782997	
	Paramètres	Unité	PM1 (1 m)	PM2 (2 m)	PM3 (1 m)	PM4 (0,4-1 m)	PM5 (0,6-1 m)	PM6 (0-0,7 m)
	Minéralisation à l'eau régale		++2)	++2)	++2)	++2)	++2)	++2)

Métaux

VICTORY.									
Paramètres	Unité	782992	782993	782994	782995	782996	782997		
		PM1 (1 m)	PM2 (2 m)	PM3 (1 m)	PM4 (0,4-1 m)	PM5 (0,6-1 m)	PM6 (0-0,7 m)		
Antimoine (Sb)	mg/kg MS	1,5	1,0	1,5	1,8	1,4	1,5		
Arsenic (As)	mg/kg MS	4,2	5,3	8,3	3,8	11	8,4		
Baryum (Ba)	mg/kg MS	48	56	91	56	300	90		
Cadmium (Cd)	mg/kg MS	0,1	0,3	0,4	0,2	0,5	0,4		
Chrome (Cr)	mg/kg MS	15	15	23	15	24	29		
Cuivre (Cu)	mg/kg MS	13	18	23	14	190	27		
Mercure (Hg)	mg/kg MS	<0,055)	0,07	0,16	<0,055)	0,20	0,12		
Molybdène (Mo)	mg/kg MS	<1,05)	<1,05)	<1,05)	<1,05)	<1,05)	<1,05)		
Nickel (Ni)	ma/ka MS	11	11	19	13	19	18		

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

RAPPORT D'ANALYSE 1390644 PR.59GT.23.0294-59EN - T.RAMARD - PO.DTEN.24.0307

Date: 03.04.2024

Information sur l'échantillon

Numéro d'échantillon	Date de prélèvement	Nom d'échantillon
782992	20.03.2024	PM1 (1 m)
782993	20.03.2024	PM2 (2 m)
782994	20.03.2024	PM3 (1 m)
782995	20.03.2024	PM4 (0,4-1 m)
782996	20.03.2024	PM5 (0,6-1 m)
782997	20.03.2024	PM6 (0-0,7 m)

Paramètres	Unité	782992 PM1 (1 m)	782993 PM2 (2 m)	782994 PM3 (1 m)	782995 PM4 (0,4-1 m)	782996 PM5 (0,6-1 m)	782997 PM6 (0-0,7 m)
Plomb (Pb)	mg/kg MS	17	23	51	13	64	46
Sélénium (Se)	mg/kg MS	<1,05)	<1,05)	<1,05)	<1,05)	<1,05)	<1,05)
Zinc (Zn)	mg/kg MS	33	44	140	40	170	85

Hydrocarbures Aromatiques Polycycliques (ISO)

Paramètres	Unité	782992	782993	782994	782995	782996	782997
		PM1 (1 m)	PM2 (2 m)	PM3 (1 m)	PM4 (0,4-1 m)	PM5 (0,6-1 m)	PM6 (0-0,7 m)
Naphtalène	mg/kg MS	<0,050 ⁵⁾	0,064	0,080	<0,0505)	<0,050 ⁵⁾	<0,050 ⁵⁾
Acénaphtylène	mg/kg MS	<0,050 ⁵⁾					
Acénaphtène	mg/kg MS	<0,050 ⁵⁾	<0,050 ⁵⁾	<0,0505)	<0,0505)	<0,050 ⁵⁾	<0,050 ⁵⁾
Fluorène	mg/kg MS	<0,050 ⁵⁾					
Phénanthrène	mg/kg MS	0,078	0,67	0,25	0,13	0,15	0,069
Anthracène	mg/kg MS	<0,050 ⁵⁾	0,12	<0,050 ⁵⁾	<0,050 ⁵⁾	<0,050 ⁵⁾	<0,050 ⁵⁾
Fluoranthène	mg/kg MS	0,24	1,5	0,51	0,23	0,17	0,11
Pyrène	mg/kg MS	0,19	1,1	0,33	0,11	0,30	0,068
Benzo(a)anthracène	mg/kg MS	0,13	0,78	0,27	0,10	0,22	0,062
Chrysène	mg/kg MS	0,13	0,74	0,25	0,13	0,26	0,076
Benzo(b)fluoranthène	mg/kg MS	0,15	0,72	0,25	0,15	0,40	0,086
Benzo(k)fluoranthène	mg/kg MS	0,064	0,37	0,15	0,069	0,21	<0,050 ⁵⁾
Benzo(a)pyrène	mg/kg MS	0,13	0,73	0,28	0,094	0,37	0,071
Dibenzo(a,h)anthracène	mg/kg MS	<0,050 ⁵⁾	0,087	<0,050 ⁵⁾	<0,050 ⁵⁾	<0,050 ⁵⁾	<0,050 ⁵⁾
Benzo(g,h,i)pérylène	mg/kg MS	0,084	0,51	0,22	0,070	0,34	<0,050 ⁵⁾
Indéno(1,2,3-cd)pyrène	mg/kg MS	0,089	0,54	0,17	0,080	0,34	<0,050 ⁵⁾
HAP (6 Borneff) - somme	mg/kg MS	0,757	4,37	1,58	0,693	1,83	0,2674)
Somme HAP (VROM)	mg/kg MS	0,9454)	6,02	2,18 ⁴⁾	0,9034)	2,064)	0,3884)
HAP (EPA) - somme	mg/kg MS	1,294)	7,93 ⁴⁾	2,76 ⁴⁾	1,16 ⁴⁾	2,764)	0,5424)

Composés aromatiques

Daramàtros	l lmitá	782992	782993	782994	782995	782996	782997
Paramètres	Unité	PM1 (1 m)	PM2 (2 m)	PM3 (1 m)	PM4 (0,4-1 m)	PM5 (0,6-1 m)	PM6 (0-0,7 m)
Benzène	mg/kg MS	<0,050 ⁵⁾					
Toluène	mg/kg MS	<0,050 ⁵⁾					
Ethylbenzène	mg/kg MS	<0,050 ⁵⁾					
m,p-Xylène	mg/kg MS	<0,105)	<0,105)	<0,105)	<0,105)	<0,105)	<0,105)
o-Xylène	mg/kg MS	<0,050 ⁵⁾					
Naphtalène	mg/kg MS	<0,105)	<0,105)	<0,105)	<0,105)	<0,105)	<0,105)
Somme Xylènes	mg/kg MS	n.d. ⁵⁾					
BTEX total*)	mg/kg MS	n.d. ⁵⁾					

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

RAPPORT D'ANALYSE 1390644 PR.59GT.23.0294-59EN - T.RAMARD - PO.DTEN.24.0307

Date: 03.04.2024

Information sur l'échantillon

Numéro d'échantillon	Date de prélèvement	Nom d'échantillon
782992	20.03.2024	PM1 (1 m)
782993	20.03.2024	PM2 (2 m)
782994	20.03.2024	PM3 (1 m)
782995	20.03.2024	PM4 (0,4-1 m)
782996	20.03.2024	PM5 (0,6-1 m)
782997	20.03.2024	PM6 (0-0,7 m)

Hydrocarbures totaux (ISO)

,							
Paramètres	Unité	782992 PM1 (1 m)	782993 PM2 (2 m)	782994 PM3 (1 m)	782995 PM4 (0,4-1 m)	782996 PM5 (0,6-1 m)	782997 PM6 (0-0,7 m)
Hydrocarbures totaux C10-C40	mg/kg MS	<20,0 ⁵⁾	83,5	26,1	29,8	110	<20,0 ⁵⁾
Fraction C10-C12*)	mg/kg MS	<4,0 ⁵⁾	<4,0 ⁵⁾	<4,0 ⁵⁾	<4,0 ⁵⁾	<4,0 ⁵⁾	<4,0 ⁵⁾
Fraction C12-C16*)	mg/kg MS	<4,0 ⁵⁾	<4,0 ⁵⁾	<4,0 ⁵⁾	<4,0 ⁵⁾	20,0	<4,0 ⁵⁾
Fraction C16-C20*)	mg/kg MS	<2,0 ⁵⁾	7,5	4,7	3,2	7,0	<2,0 ⁵⁾
Fraction C20-C24*)	mg/kg MS	<2,0 ⁵⁾	12,0	4,6	5,2	18,7	<2,0 ⁵⁾
Fraction C24-C28*)	mg/kg MS	<2,05)	18,4	4,2	7,1	19,8	2,5
Fraction C28-C32*)	mg/kg MS	<2,05)	24	4,7	6,4	19	3,3
Fraction C32-C36*)	mg/kg MS	<2,05)	12,9	2,8	4,0	15,6	<2,05)
Fraction C36-C40*)	mg/kg MS	<2,05)	4,5	<2,0 ⁵⁾	<2,05)	6,8	<2,05)

Polychlorobiphényles

Paramètres	Unité	782992 PM1 (1 m)	782993 PM2 (2 m)	782994 PM3 (1 m)	782995 PM4 (0,4-1 m)	782996 PM5 (0,6-1 m)	782997 PM6 (0-0,7 m)
Somme 6 PCB	mg/kg MS	n.d. ⁵⁾	n.d. ⁵⁾	0,00104)	n.d. ⁵⁾	0,0224)	0,00804)
Somme 7 PCB (Ballschmiter)	mg/kg MS	n.d. ⁵⁾	n.d. ⁵⁾	0,00104)	n.d. ⁵⁾	0,0264)	0,00904)
PCB (28)	mg/kg MS	<0,001 ⁵⁾	<0,0015)	<0,0015)	<0,0015)	<0,0015)	<0,001 ⁵⁾
PCB (52)	mg/kg MS	<0,001 ⁵⁾	<0,0015)	<0,0015)	<0,0015)	0,002	<0,0015)
PCB (101)	mg/kg MS	<0,001 ⁵⁾	<0,0015)	<0,0015)	<0,0015)	0,006	0,001
PCB (118)	mg/kg MS	<0,001 ⁵⁾	<0,0015)	<0,0015)	<0,0015)	0,004	0,001
PCB (138)	mg/kg MS	<0,0015)	<0,0015)	0,001	<0,0015)	0,007	0,004
PCB (153)	mg/kg MS	<0,001 ⁵⁾	<0,0015)	<0,0015)	<0,0015)	0,005	0,002
PCB (180)	mg/kg MS	<0,001 ⁵⁾	<0,0015)	<0,0015)	<0,0015)	0,002	0,001

Analyses sur éluat après lixiviation

Paramètres	Unité	782992 PM1 (1 m)	782993 PM2 (2 m)	782994 PM3 (1 m)	782995 PM4 (0,4-1 m)	782996 PM5 (0,6-1 m)	782997 PM6 (0-0,7 m)
L/S cumulé	ml/g	10,0	10,0	10,0	10,0	10,0	10,0
Conductivité électrique	μS/cm	66,7	72,9	95,2	100	220	130
Température	°C	20,3	19,3	18,1	19,1	19,4	19,1
pH		8,9	8,9	8,1	10,0	8,6	7,9

Calcul des Fractions solubles

Paramètres	Unité	782992 PM1 (1 m)	782993 PM2 (2 m)	782994 PM3 (1 m)	782995 PM4 (0,4-1 m)	782996 PM5 (0,6-1 m)	782997 PM6 (0-0,7 m)
Fraction soluble cumulé (var. L/S)	mg/kg MS	0 - 1000	0 - 1000	0 - 1000	0 - 1000	1500	0 - 1000
Antimoine cumulé (var. L/S)	mg/kg MS	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Your labs. Your service.

RAPPORT D'ANALYSE 1390644 PR.59GT.23.0294-59EN - T.RAMARD - PO.DTEN.24.0307

Date: 03.04.2024

Information sur l'échantillon

Numéro d'échantillon	Date de prélèvement	Nom d'échantillon
782992	20.03.2024	PM1 (1 m)
782993	20.03.2024	PM2 (2 m)
782994	20.03.2024	PM3 (1 m)
782995	20.03.2024	PM4 (0,4-1 m)
782996	20.03.2024	PM5 (0,6-1 m)
782997	20.03.2024	PM6 (0-0,7 m)

Paramètres	Unité	782992 PM1 (1 m)	782993 PM2 (2 m)	782994 PM3 (1 m)	782995 PM4 (0,4-1 m)	782996 PM5 (0,6-1 m)	782997 PM6 (0-0,7 m)
Arsenic cumulé (var. L/S)	mg/kg MS	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0,10	0 - 0,05
Baryum cumulé (var. L/S)	mg/kg MS	0 - 0,1	0 - 0,1	0 - 0,1	0 - 0,1	0,29	0,11
COT cumulé (var. L/S)	mg/kg MS	0 - 200	0 - 200	0 - 200	0 - 200	0 - 200	0 - 200
Cadmium cumulé (var. L/S)	mg/kg MS	0 - 0,001	0 - 0,001	0 - 0,001	0 - 0,001	0,001	0 - 0,001
Chlorures cumulé (var. L/S)	mg/kg MS	0 - 10	0 - 10	0 - 10	34	10	0 - 10
Chrome cumulé (var. L/S)	mg/kg MS	0 - 0,02	0 - 0,02	0 - 0,02	0 - 0,02	0,16	0 - 0,02
Cuivre cumulé (var. L/S)	mg/kg MS	0 - 0,02	0 - 0,02	0,04	0,02	0,03	0,07
Fluorures cumulé (var. L/S)	mg/kg MS	7,0	9,0	15	11	7,0	8,0
Indice phénol cumulé (var. L/S)	mg/kg MS	0 - 0,2	0 - 0,2	0 - 0,2	0 - 0,2	0 - 0,2	0 - 0,2
Mercure cumulé (var. L/S)	mg/kg MS	0 - 0,0003	0 - 0,0003	0 - 0,0003	0 - 0,0003	0,0003	0 - 0,0003
Molybdène cumulé (var. L/S)	mg/kg MS	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05
Nickel cumulé (var. L/S)	mg/kg MS	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05
Plomb cumulé (var. L/S)	mg/kg MS	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05
Sulfates cumulé (var. L/S)	mg/kg MS	0 - 50	0 - 50	0 - 50	100	530	250
Sélénium cumulé (var. L/S)	mg/kg MS	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05	0 - 0,05
Zinc cumulé (var. L/S)	mg/kg MS	0 - 0,02	0 - 0,02	0 - 0,02	0 - 0,02	0,02	0,02

Analyses Physico-chimiques sur éluat

Paramètres	Unité	782992	782993	782994	782995	782996	782997
		PM1 (1 m)	PM2 (2 m)	PM3 (1 m)	PM4 (0,4-1 m)	PM5 (0,6-1 m)	PM6 (0-0,7 m)
Résidu à sec	mg/l	<1005)	<100 ⁵⁾	<1005)	<1005)	154	<1005)
Fluorures (F)	mg/l	0,7	0,9	1,5	1,1	0,7	0,8
Indice phénol	mg/l	<0,0205)	<0,0205)	<0,0205)	<0,020 ⁵⁾	<0,0205)	<0,020 ⁵⁾
Chlorures (CI)	mg/l	<1,05)	<1,05)	<1,05)	3,4	1,0	<1,05)
Sulfates (SO4)	mg/l	<5,0 ⁵⁾	<5,0 ⁵⁾	<5,0 ⁵⁾	10	53	25
СОТ	mg/l	<205)	<20 ⁵⁾	<205)	<205)	<205)	<205)

Métaux sur éluat

Metaux sur cluat							
Paramètres	Unité	782992 PM1 (1 m)	782993 PM2 (2 m)	782994 PM3 (1 m)	782995 PM4 (0,4-1 m)	782996 PM5 (0,6-1 m)	782997 PM6 (0-0,7 m)
Antimoine (Sb)	μg/l	<5,0 ⁵⁾	<5,0 ⁵⁾	<5,0 ⁵⁾	<5,0 ⁵⁾	<5,0 ⁵⁾	<5,0 ⁵⁾
Arsenic (As)	μg/l	<5,0 ⁵⁾	<5,0 ⁵⁾	<5,0 ⁵⁾	<5,0 ⁵⁾	10	<5,0 ⁵⁾
Baryum (Ba)	μg/l	<105)	<10 ⁵⁾	<105)	<10 ⁵⁾	29	11
Cadmium (Cd)	μg/l	<0,15)	<0,15)	<0,15)	<0,15)	0,1	<0,15)
Chrome (Cr)	μg/l	<2,05)	<2,05)	<2,05)	<2,05)	16	<2,05)
Cuivre (Cu)	μg/l	<2,05)	<2,05)	4,3	2,2	2,7	7,1
Mercure	μg/l	<0,031),5)	<0,031),5)	<0,031),5)	<0,031),5)	0,031)	<0,031),5)
Molybdène (Mo)	μg/l	<5,0 ⁵⁾	<5,0 ⁵⁾	<5,0 ⁵⁾	<5,0 ⁵⁾	<5,0 ⁵⁾	<5,0 ⁵⁾

Les paramètres réalisés par AL-West BV sont accrédités selon la norme EN ISO/IEC 17025:2017. Seuls les paramètres non accrédités et/ou externalisés sont marqués du symbole *).

OC-13-23175768-FR

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

RAPPORT D'ANALYSE 1390644 PR.59GT.23.0294-59EN - T.RAMARD - PO.DTEN.24.0307

Date: 03.04.2024

Information sur l'échantillon

Numéro d'échantillon	Date de prélèvement	Nom d'échantillon
782992	20.03.2024	PM1 (1 m)
782993	20.03.2024	PM2 (2 m)
782994	20.03.2024	PM3 (1 m)
782995	20.03.2024	PM4 (0,4-1 m)
782996	20.03.2024	PM5 (0,6-1 m)
782997	20.03.2024	PM6 (0-0,7 m)

Paramètres	Unité	782992 PM1 (1 m)	782993 PM2 (2 m)	782994 PM3 (1 m)	782995 PM4 (0,4-1 m)	782996 PM5 (0,6-1 m)	782997 PM6 (0-0,7 m)
Nickel (Ni)	μg/l	<5,0 ⁵⁾	<5,0 ⁵⁾	<5,0 ⁵⁾	<5,0 ⁵⁾	<5,0 ⁵⁾	<5,0 ⁵⁾
Plomb (Pb)	μg/l	<5,0 ⁵⁾	<5,0 ⁵⁾	<5,0 ⁵⁾	<5,0 ⁵⁾	<5,0 ⁵⁾	<5,0 ⁵⁾
Sélénium (Se)	μg/l	<5,0 ⁵⁾	<5,0 ⁵⁾	<5,0 ⁵⁾	<5,0 ⁵⁾	<5,0 ⁵⁾	<5,0 ⁵⁾
Zinc (Zn)	μg/l	<2,05)	<2,05)	<2,0 ⁵⁾	<2,05)	2,4	2,4

Les incertitudes de mesure spécifiques aux paramètres et les informations sur la méthode de détermination sont disponibles sur demande, si les résultats communiqués sont supérieurs à la limite de quantification spécifique au paramètre. Les critères de performance minimaux des méthodes appliquées sont généralement basés selon la Directive 2009/90/CE de la Commission Européenne en ce qui concerne l'incertitude

Début de l'analyse : 22.03.2024 Fin de l'analyse : 03.04.2024

Les résultats portent exclusivement sur les échantillons analysés. Si le laboratoire n'est pas responsable de l'échantillonnage, les résultats correspondent à l'échantillon tel qu'il a été reçu. Le laboratoire n'est pas responsable des informations fournies par le client. Les informations du client, le cas échéant, présentées dans le présent rapport d'analyse ne sont pas soumises à l'accréditation du laboratoire et peuvent affecter la validité des résultats d'essai. La reproduction d'extraits de ce rapport sans notre autorisation écrite n'est pas autorisée.

AL-West B.V. (AGROLAB GROUP), Mme Claire Mura, Tél: +33380680150

Ce rapport transmis électroniquement a été vérifié et validé en accord avec les prescriptions de la EN ISO/IEC 17025:2017 pour les rapports simplifiés. Il est valide avec la signature numérique.

AGROLAB GROUP

Méthode **Paramètres** Conforme a NF ISO 10390 (sol et sédiment) nH-H2O conforme EN 16192 (2011) COT

conforme ISO 10694 (2008) **COT Carbone Organique Total**

conforme NEN-EN 16192 (2011) Indice phénol

Conforme à EN-ISO 17294-2 (2004) Antimoine (Sb) [μ g/I], Arsenic (As) [μ g/I], Baryum (Ba) [μ g/I], Cadmium (Cd) [μ g/I], Chrome

(Cr) [µg/l], Cuivre (Cu) [µg/l], Molybdène (Mo) [µg/l], Nickel (Ni) [µg/l], Plomb (Pb) [µg/l],

Sélénium (Se) [µg/l], Zinc (Zn) [µg/l]

Fluorures (F)

Conforme à ISO 10359-1, conforme à EN

16192

conforme à NEN 6950 (digestion conf. à NEN Mercure (Hg)

6961/NEN-EN-ISO 54321, mesure conforme à

NEN-ISO 16772)

Conforme à NEŃ-EN 16179 Prétraitement de l'échantillon Conforme à NEN-ISO 15923-1, équivalent à Chlorures (CI), Sulfates (SO4)

de mesure.

1) Les résultats des paramètres des matières solides obtenus à la substance sèche (MS), pour les paramètres marqués d'un 1) à la substance originale (EB).

^{2) &}quot;++" Signifie que le traitement requis a été effectué en laboratoire.

^{3) &}quot;--" Signifie "non demandé".

⁴⁾ Les résultats ne tiennent pas compte des teneurs en dessous des seuils de quantification.

⁵⁾ Explication : "<" ou "n.d." indiquent que la concentration de l'analyte est inférieure à la limite de quantification (LQ).

⁶⁾ Des différences sont notées par rapport aux lignes directrices si moins de 2 kg d'échantillon ont été livrés

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110

e-Mail: info@al-west.nl, www.al-west.nl

Date: 03.04.2024

NEN-EN 16192

Equivalent à NF EN ISO 15216 Résidu à sec

ISO 16703 Hydrocarbures totaux C10-C40

ISO 16703*) Fraction C10-C12*), Fraction C12-C16*), Fraction C16-C20*), Fraction C20-C24*), Fraction

C24-C28*), Fraction C28-C32*), Fraction C32-C36*), Fraction C36-C40*)

ISO 22155 Benzène, Toluène, Ethylbenzène, m,p-Xylène, o-Xylène, Naphtalène, Somme Xylènes

BTEX total*) ISO 22155*)

Minéralisation conforme à NEN-EN-ISO 54321, Antimoine (Sb) [mg/kg MS], Arsenic (As) [mg/kg MS], Baryum (Ba) [mg/kg MS], Cadmium mesure conforme à NEN-EN-ISO 11885

(Cd) [mg/kg MS], Chrome (Cr) [mg/kg MS], Cuivre (Cu) [mg/kg MS], Molybdène (Mo) [mg/kg MS], Nickel (Ni) [mg/kg MS], Plomb (Pb) [mg/kg MS], Sélénium (Se) [mg/kg MS],

Zinc (Zn) [mg/kg MS]

RAPPORT D'ANALYSE 1390644 PR.59GT.23.0294-59EN - T.RAMARD - PO.DTEN.24.0307

méthode interne Masse échantillon total inférieure à 2 kg⁶⁾, Broyeur à mâchoires

méthode interne (conforme NEN-EN-ISO Mercure

12846)

NEN-EN 15934 Matière sèche

NEN-EN 16167 Somme 6 PCB, Somme 7 PCB (Ballschmiter), PCB (28), PCB (52), PCB (101), PCB (118),

PCB (138), PCB (153), PCB (180)

NF EN 12457-2 Lixiviation (EN 12457-2) NF-EN 16174; NF EN 13657 (déchets) Minéralisation à l'eau régale

Selon norme lixiviation Fraction >4mm (EN12457-2), L/S cumulé, Conductivité électrique, Température, pH,

Fraction soluble cumulé (var. L/S), Antimoine cumulé (var. L/S), Arsenic cumulé (var. L/S), Baryum cumulé (var. L/S), COT cumulé (var. L/S), Cadmium cumulé (var. L/S), Chlorures cumulé (var. L/S), Chrome cumulé (var. L/S), Cuivre cumulé (var. L/S), Fluorures cumulé (var. L/S), Indice phénol cumulé (var. L/S), Mercure cumulé (var. L/S), Molybdène cumulé (var. L/S), Nickel cumulé (var. L/S), Plomb cumulé (var. L/S), Sulfates cumulé (var. L/S),

Sélénium cumulé (var. L/S), Zinc cumulé (var. L/S)

Masse brute Mh pour lixiviation*), Volume de lixiviant L ajouté pour l'extraction*) Selon norme lixiviation*) Naphtalène, Acénaphtylène, Acénaphtène, Fluorène, Phénanthrène, Anthracène, équivalent à NF EN 16181

Fluoranthène, Pyrène, Benzo(a)anthracène, Chrysène, Benzo(b)fluoranthène,

Benzo(k)fluoranthène, Benzo(a)pyrène, Dibenzo(a,h)anthracène, Benzo(g,h,i)pérylène, Indéno(1,2,3-cd)pyrène, HAP (6 Borneff) - somme, Somme HAP (VROM), HAP (EPA) -

Dortmundstraat 16B, 7418 BH Deventer, the Netherlands Tel. +31(0)570 788110 e-Mail: info@al-west.nl, www.al-west.nl

RAPPORT D'ANALYSE 1390644 PR.59GT.23.0294-59EN - T.RAMARD - PO.DTEN.24.0307

Date: 03.04.2024

Annexe de N° commande 1390644

Conservation, date de conservation et flaconnage

Dans les analyses énumérées ci-dessous, il y a des déviations par rapport aux directives de conservation qui peuvent avoir une influence potentielle sur les résultats.

La date limite de conservation est dépassée pour les analyses suivantes:

 Benzène
 782993

 Ethylbenzène
 782993

 m,p-Xylène
 782993

 Naphtalène
 782993

 o-Xylène
 782993

 Somme Xylènes
 782993

 Toluène
 782993

www.groupefondasol.com

VOTRE AGENCE

PARC D'ACTIVITE DU MELANTOIS 50 RUE DES SORBIRES CS20541 59815- LESQUIN CEDEX

2 03.20.14.99.40

₼ 03.20.13.84.32

1 environnement.lille@groupefondasol.com